Détecteur à longueur d'onde variable Agilent série 1200 G1314B /G1314C (SL)

Manuel d'utilisation

Avertissements

© Agilent Technologies, Inc. 2006 Conformément aux lois nationales et internationales relatives à la propriété intellectuelle, toute reproduction totale ou partielle de ce manuel sous quelque forme que ce soit, par quelque moyen que ce soit, voie électronique ou traduction, est interdite sans le consentement écrit préalable de la société Agilent Technologies, Inc.

Référence du manuel

G1314-93010

Edition

02/06

Imprimé en Allemagne Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

Organisation des manuels

Le manuel d'utilisation G1314-90010 (version anglaise) et ses versions localisées contiennent un sous-ensemble du manuel d'entretien et sont livrés avec le détecteur au format papier.

Les versions les plus récentes des manuels sont disponibles sur le site Web Agilent.

Le manuel d'entretien G1314-90110 (version anglaise) contient les informations relatives au détecteur à longueur d'onde variable Agilent série 1200. Il est disponible uniquement sous forme de fichier Adobe Reader (PDF).

Garantie

Les informations contenues dans ce document sont fournies "en l'état" et pourront faire l'objet de modifications sans préavis dans les éditions ultérieures. Dans les limites de la législation en vigueur, Agilent exclut en outre toute garantie, expresse ou implicite, quant à ce manuel et aux informations contenues dans ce dernier, notamment, mais sans s'y restreindre, toute garantie marchande et aptitude à un but particulier. En aucun cas, Agilent ne peut être tenu responsable des éventuelles erreurs contenues dans ce document, ni des dommages directs ou indirects pouvant découler des informations contenues dans ce document, de la fourniture, de l'usage ou de la qualité de ce document. Si Agilent et l'utilisateur ont souscrit un contrat écrit distinct dont les conditions de garantie relatives au produit couvert par ce document entrent en conflit avec les présentes conditions, les conditions de garantie du contrat distinct se substituent aux conditions stipulées dans le présent document.

Licences technologiques

Le matériel et le logiciel décrits dans ce document sont protégés par un accord de licence et leur utilisation ou reproduction sont soumises aux termes et conditions de ladite licence.

Limitation des droits

L'utilisation du logiciel dans le cadre d'un contrat principal ou de sous-traitance avec le Gouvernement américain est soumise à la réglementation fédérale des Etats-Unis régissant les logiciels informatiques commerciaux (DFAR 252.227-7014, juin 1995) ou les produits commerciaux (FAR 2.101(a)) ou les logiciels informatiques sous licences (FAR 52.227-19, juin 1987) ou toute réglementation ou clause de contrat équivalente. L'utilisation, la duplication ou la publication de ce logiciel est soumise aux termes de la licence commerciale standard délivrée par Agilent Technologies. Conformément à la directive FAR 52.227-19(c)(1-2) (juin 1987), les droits d'utilisation accordés aux départements et agences rattachés au Gouvernement américain sont limités aux termes de la présente limitation des droits. Les droits d'utilisation accordés au Gouvernement américain dans le cadre des données techniques sont limités conformément aux directives FAR 52.227-14 (juin 1987) ou DFAR 252.227-7015 (b)(2) (novembre 1995).

Mentions de sécurité

ATTENTION

Une mention **ATTENTION** signale un danger. Si la procédure, le procédé ou les consignes ne sont pas exécutés correctement, le produit risque d'être endommagé ou les données d'être perdues. En présence d'une mention **ATTENTION**, vous devez continuer votre opération uniquement si vous avez totalement assimilé et respecté les conditions mentionnées.

AVERTISSEMENT

Une mention AVERTISSEMENT signale un danger. Si la procédure, le procédé ou les consignes ne sont pas exécutés correctement, les personnes risquent de s'exposer à des lésions graves. En présence d'une mention AVERTISSEMENT, vous devez continuer votre opération uniquement si vous avez totalement assimilé et respecté les conditions mentionnées.

Dans ce manuel...

Ce manuel présente les détecteurs à longueur d'onde variable Agilent série 1200.

- VWD G1314B Agilent série 1200
- VWD-SL G1314C Agilent série 1200

1 Présentation du détecteur à longueur d'onde variable (VWD)

Ce chapitre présente le détecteur, les instruments et les connecteurs internes.

2 Conditions requises sur site et spécifications

Ce chapitre fournit des informations sur les exigences en matière d'environnement, les caractéristiques physiques et les spécifications des performances.

3 Installation du détecteur

Ce chapitre décrit l'installation du détecteur.

4 Utilisation du détecteur

Ce chapitre contient des informations sur la configuration du détecteur pour une analyse et décrit les paramètres de base.

5 Comment optimiser le détecteur

Ce chapitre propose des conseils relatifs à la sélection des paramètres du détecteur et de la cuve à circulation.

6 Dépannage et diagnostic

Généralités sur les fonctions de diagnostic et de dépannage.

7 Maintenance et réparation

Ce chapitre fournit les informations générales concernant la maintenance et la réparation du détecteur.

8 Maintenance

Ce chapitre décrit la maintenance du détecteur.

9 Pièces et matériels pour maintenance

Ce chapitre fournit les informations concernant les pièces pour maintenance.

10 Annexe

Ce chapitre apporte des informations supplémentaires sur la sécurité, la réglementation et notre site Web.

Sommaire

1 Présentation du détecteur à longueur d'onde variable (VWD) 7

Présentation du détecteur8Généralités sur le système optique9Raccordements électriques14Structure de l'instrument16La maintenance prédictive (EMF : Early Maintenance Feedback)17

2 Conditions requises sur site et spécifications 19

Conditions requises sur site20Caractéristiques physiques23Spécifications des performances24

3 Installation du détecteur 27

Déballage du détecteur 28 Optimisation de la configuration de la pile de modules 30 Installation du détecteur 33 Raccordements des fluides au détecteur 36

4 Utilisation du détecteur 39

Configuration d'une analyse 40 Paramètres spéciaux du détecteur 55

5 Comment optimiser le détecteur 63

Optimisation des performances du détecteur 64

6 Dépannage et diagnostic 69

Présentation des voyants d'état et des fonctions de test du détecteur 70 Voyants d'état 71 Interfaces utilisateur 73 Logiciel de diagnostic CPL Agilent 74

7 Maintenance et réparation 75

Maintenance et réparation - Introduction 76 Avertissements et précautions 77

Sommaire

Nettoyage du détecteur 78 Utilisation du bracelet antistatique 79

8 Maintenance 81

Généralités sur la maintenance 82 Remplacement d'une lampe 83 Remplacement d'une cuve à circulation 86 Réparer la cuve à circulation 89 Utilisation de la porte-cuve 92 95 Élimination des fuites Remplacement de pièces du système d'élimination des fuites 96 Remplacement de la carte d'interface 98 Remplacement du micrologiciel du détecteur 100 Tests et étalonnages 101 Test d'intensité 102 Vérification/étalonnage des longueurs d'onde 104 Test avec le filtre d'oxyde d'holmium 106

9 Pièces et matériels pour maintenance 109

110 Généralités sur les pièces pour maintenance Cuve à circulation standard 111 Cuve à circulation micro 112 Cuve à circulation semi-micro 114 Cuve à circulation haute pression 116 Porte-cuve 117 Pièces de récupération des fuites 118 Kit d'accessoires 119

10 Annexe 121

Informations générales de sécurité 122 Informations sur les piles au lithium 125 Perturbations radioélectriques 126 Niveau sonore 127 **Rayonnement UV** 128 Informations sur les solvants 129 Déclaration de conformité du filtre à l'oxyde d'holmium (HOX2) 131 Agilent Technologies sur Internet 132

Présentation du détecteur à longueur d'onde variable (VWD)

Présentation du détecteur 8 Généralités sur le système optique 9 Raccordements électriques 14 Structure de l'instrument 16 La maintenance prédictive (EMF : Early Maintenance Feedback) 17 Compteurs EMF 17 Utilisation des compteurs EMF 17

Ce chapitre présente le détecteur, les instruments et les connecteurs internes.

1 Présentation du détecteur à longueur d'onde variable (VWD) Présentation du détecteur

Présentation du détecteur

Le détecteur à longueur d'onde variable Agilent série 1200 se distingue par des performances optiques supérieures, sa conformité aux BPL (Bonnes Pratiques de Laboratoire) et sa maintenance facile. Il possède les caractéristiques suivantes :

- débit de données supérieur (27/55 Hz) pour CLHP rapide avec le VWD-SL G1314C ; « Définir les paramètres du détecteur », page 67,
- lampe deutérium pour la plus haute intensité et la plus basse limite de détection sur une gamme de longueurs d'onde de 190 à 600 nm,
- cartouches de cuves à circulation facultatives (standard 10 mm 14 μ l, haute pression 10 mm 14 μ l, micro 5 mm 1 μ l, semi-micro 6 mm 5 μ l) disponibles et utilisables selon les besoins de l'application,
- accès facile par l'avant aux lampes et à la cuve à circulation, pour remplacement rapide, et
- filtre d'oxyde d'holmium pour une vérification rapide de l'exactitude de la longueur d'onde.

Pour connaître les spécifications, voir « Spécifications des performances », page 24.

Le détecteur à longueur d'onde variable Agilent série 1200 existe en deux versions :

VWD G1314B	Détecteur à longueur d'onde variable série 1200 version standard
VWD-SL G1314C	Détecteur à longueur d'onde variable SL série 1200 haut débit pour CLHP rapide

REMARQUE

Le VWD-SL G1314C peut être piloté par un module de commande G1323B simplement en mode standard, comme le G1314B. Il n'est pas possible de sélectionner un débit de données supérieur.

Généralités sur le système optique

Le système optique du détecteur est illustré à la Figure 1, page 10. Sa source de radiation est une lampe deutérium pour la gamme de longueurs d'onde d'ultraviolets (UV) comprise entre 190 et 600 nm. Le faisceau lumineux provenant de la lampe deutérium passe au travers d'une lentille, d'un ensemble filtre (en position Aucune, Coupure ou Oxyde d'holmium), une fente d'entrée, un miroir sphérique (M1), un réseau, un second miroir sphérique (M2), un diviseur de faisceau et, finalement, une cuve à circulation vers la diode d'échantillon. Le flux au travers de la cuve à circulation est absorbé en fonction des solutions dans la cellule où l'absorption a lieu, puis l'intensité est convertie en un signal électrique au moyen d'une photodiode d'échantillon. Une partie de la lumière est dirigée vers la photodiode de référence par le diviseur de faisceau, afin d'obtenir un signal de référence pour compenser la fluctuation d'intensité de la source lumineuse. Une fente placée devant la photodiode de référence coupe la lumière de la bande passante d'échantillon. La sélection de longueur d'onde se fait par rotation du réseau, sous le contrôle d'un moteur pas à pas. Cette configuration se prête à un changement rapide de la longueur d'onde. Le filtre de coupure est déplacé dans le faisceau lumineux au-dessus de 370 nm pour réduire la lumière d'ordre supérieure.

1 Présentation du détecteur à longueur d'onde variable (VWD)

Généralités sur le système optique

Figure 1 Trajet optique du détecteur à longueur d'onde variable

Cuve à circulation

Diverses cartouches de cuve à circulation peuvent être insérées par le même système de montage rapide et simple.

Présentation du détecteur à longueur d'onde variable (VWD) 1

Généralités sur le système optique

Figure 2 Cuve à circulation de type cartouche

	STD	Semi-micro	Haute pression	Micro	
Pression maximum	40 (4)	40 (4)	400 (40)	40 (4)	bar (MPa)
Long. du trajet	10 (conique)	6 (conique)	10 (conique)	5	mm
Volume	14	5	14	1	μl
Diam. int. entrée	0.17	0.17	0.17	0.1	mm
Longueur d'entrée	750	750	750	555	mm
Diam. int. sortie	0.25	0.25	0.25	0.25	mm
Longueur de sortie	120	120	120	120	mm
Matériaux en contact avec le solvant	inox, quartz, PTFE, PEEK	acier, quartz, PTFE	acier, quartz, Kapton	acier, quartz, PTFE	

Lampe

La source lumineuse de la gamme de longueur d'onde UV est une lampe deutérium. Par suite d'une décharge de plasma dans un gaz deutérium à basse pression, la lampe émet de la lumière sur la gamme de longueur d'onde de 190 à 600 nm.

Ensemble lentille de source

La lentille de source reçoit la lumière de la lampe deutérium et la concentre sur la fente d'entrée.

Ensemble fente d'entrée

L'ensemble fente d'entrée a une fente remplaçable. La fente du modèle standard est de 1 mm. Une fente avec un trou est nécessaire lors du remplacement et de l'étalonnage afin d'optimiser l'alignement.

Ensemble filtre

L'ensemble filtre est actionné de manière électromécanique. Pendant les étalonnages de longueurs d'onde, il se déplace dans le faisceau lumineux.

L'ensemble possède deux filtres et il est contrôlé par processeur.

OUVERTURE	rien dans le faisceau lumineux
COUPURE	filtre de coupure dans le faisceau lumineux à $?$ > 370 nm
HOLMIUM	filtre d'oxyde d'holmium pour vérification des longueurs d'onde.

Un photodétecteur détermine la position correcte.

Présentation du détecteur à longueur d'onde variable (VWD) 1

Généralités sur le système optique

Figure 3 Ensemble filtre

Ensemble miroirs M1 et M2

L'instrument contient deux miroirs sphériques (M1 et M2). Le faisceau est ajustable verticalement et horizontalement. Les deux miroirs sont identiques.

Ensemble réseau

Le réseau sépare le faisceau lumineux en toutes ses longueurs d'onde et reflète la lumière sur le miroir N° 2.

Ensemble diviseur de faisceau

Le diviseur divise le faisceau lumineux. Une partie va directement vers la diode échantillon. L'autre partie du faisceau lumineux va directement à la diode de référence.

Ensembles photodiodes

L'unité optique comporte deux ensembles de photodiodes. L'ensemble diode échantillon est situé sur la partie gauche de l'unité optique. L'ensemble diode échantillon est situé à l'avant près de l'unité optique.

Photodiode CAN (convertisseur analogique/numérique)

Le courant de photodiode est converti directement en signal numérique à 20 bits. Les données sont transférées vers la carte principale du détecteur (VWM). Les cartes CAN photodiode se trouvent près des photodiodes.

1 Présentation du détecteur à longueur d'onde variable (VWD) Raccordements électriques

Raccordements électriques

- Le connecteur GPIB (G1314B uniquement) sert à relier le détecteur à un ordinateur. Le module de commutateur d'adresse et de contrôle situé à côté du connecteur GPIB détermine l'adresse GPIB de votre détecteur. Les commutateurs sont préréglés sur une adresse par défaut reconnue une fois après la mise sous tension.
- Le bus CAN est un bus série qui permet des échanges de données à grande vitesse. Les deux connecteurs du bus CAN sont utilisés pour les transferts de données internes et la synchronisation des modules Agilent Série 1200.
- Une sortie analogique fournit des signaux pour les intégrateurs ou pour les systèmes de traitement des données.
- L'emplacement de la carte d'interface est utilisé pour les contacts externes et pour la sortie du numéro de flacon en DCB ou les connexions LAN.
- Le connecteur REMOTE peut être utilisé avec d'autres instruments analytiques Agilent Technologies si vous voulez utiliser des fonctionnalités telles que le démarrage (start), l'arrêt (stop), la fermeture commune (common shut down), la préparation (prepare), etc.
- Avec le logiciel approprié, le connecteur RS-232C peut être utilisé pour piloter le module de commande à partir d'un ordinateur via une liaison RS-232C. Ce connecteur est activé et peut être configuré avec le commutateur de configuration. Pour de plus amples informations, consultez la documentation du logiciel.
- La prise d'entrée d'alimentation accepte une tension secteur de 220–240 VCA ± 10 % avec une fréquence de secteur de 50 ou 60 Hz. La consommation maximale est de 220 VCA. Votre module ne comporte pas de sélecteur de tension, car l'alimentation a une plage de tolérance large. Ils ne comportent pas non plus de fusibles externes car l'alimentation intègre des fusibles électroniques automatiques. Le levier de sécurité situé au niveau de la prise d'entrée d'alimentation empêche d'enlever le couvercle du module tant que le câble d'alimentation est connecté.

REMARQUE

Pour un bon fonctionnement et le respect des normes de sécurité ou de compatibilité électromagnétique, utilisez uniquement les câbles fournis par Agilent Technologies.

Présentation du détecteur à longueur d'onde variable (VWD) 1

Raccordements électriques

REMARQUE Le VWD-SL G1314C ne possède pas de connecteur GPIB.

1 Présentation du détecteur à longueur d'onde variable (VWD) Structure de l'instrument

Structure de l'instrument

La conception industrielle de ce module recèle plusieurs caractéristiques innovantes. Elle utilise le concept E-PAC d'Agilent pour le conditionnement de l'électronique et des ensembles mécaniques. Ce concept est basé sur l'utilisation de séparateurs de mousse plastique constitués de couches de polypropylène expansé (EPP) dans lesquels sont placés les composants mécaniques et électroniques du module. L'ensemble est ensuite logé dans un coffret interne en métal, lui-même placé dans un coffret externe en plastique. Ce type de conditionnement présente les avantages suivants :

- élimination presque totale des vis, écrous ou liens de fixation, réduisant le nombre de composants et augmentant la vitesse de montage et de démontage ;
- des canaux d'air sont moulés dans les couches en plastique de telle sorte que l'air de refroidissement atteigne exactement les endroits voulus ;
- les structures en plastique protègent les éléments électroniques et mécaniques de tout choc physique ;
- le coffret interne en métal met l'électronique interne à l'abri de toute interférence électromagnétique, en même temps qu'il contribue à réduire ou à éliminer les émissions de fréquence radio émanant de l'instrument lui-même.

La maintenance prédictive (EMF : Early Maintenance Feedback)

La maintenance impose le remplacement des composants sujets à l'usure ou aux contraintes mécaniques. En principe, la fréquence de remplacement des composants doit être calculée en fonction de l'intensité d'utilisation de l'instrument et les conditions analytiques, et non d'une périodicité. La fonction de maintenance préventive contrôle l'utilisation de certains composants de l'instrument et fournit des informations lorsque les limites programmables par l'utilisateur sont dépassées. L'alerte visuelle dans l'interface utilisateur indique qu'il faut planifier des opérations de maintenance.

Compteurs EMF

Le détecteur comporte deux compteurs EMF pour les lampes. Chaque compteur évolue en fonction de l'utilisation de la lampe, une limite maximale peut être définie pour que l'utilisateur soit informé visuellement de la nécessité de changer la lampe. Après l'échange de la lampe, chaque compteur peut être remis à zéro. Le détecteur fournit les compteurs EMF suivants :

• temps pendant lequel la lampe deutérium a fonctionné ;

Utilisation des compteurs EMF

Les seuils de maintenance prédictive définis par l'utilisateur pour les compteurs permettent d'adapter la maintenance prédictive aux besoins spécifiques de l'utilisateur. La durée de vie utile d'une lampe dépend des besoins de l'analyse (analyse à haute ou basse sensibilité, longueur d'onde, etc.) ; par conséquent, il est nécessaire de déterminer les limites maximales d'après les conditions d'utilisation spécifiques de l'instrument.

Définition des limites EMF

Le réglage des limites EMF doit être optimisé sur un ou deux cycles de maintenance. Au début, il ne faut établir aucune limite EMF. Quand les performances de l'instrument indiquent que la maintenance est nécessaire, notez les valeurs

1 Présentation du détecteur à longueur d'onde variable (VWD) La maintenance prédictive (EMF : Early Maintenance Feedback)

des compteurs de lampe. Entrez ces valeurs (ou des valeurs légèrement inférieures) comme limites EMF, puis remettez les compteurs EMF à zéro. La prochaine fois que les compteurs EMF dépasseront les nouvelles limites EMF, l'indicateur EMF s'affichera pour rappeler que le moment est venu de planifier la maintenance.

VWD série 1200 Manuel d'utilisation

Conditions requises sur site et spécifications

Conditions requises sur site20Caractéristiques physiques23Spécifications des performances24

Ce chapitre fournit des informations sur les exigences en matière d'environnement, les caractéristiques physiques et les spécifications des performances.

2 **Conditions requises sur site et spécifications Conditions requises sur site**

Conditions requises sur site

Conditions requises sur site

Un environnement adéquat est indispensable pour obtenir les meilleures performances de votre détecteur.

Alimentation électrique

Le détecteur peut être alimenté par toute tension dans une plage importante (Tableau 2, page 23). Il accepte donc toute tension comprise dans la plage pré-citée. Il n'y a donc pas de sélecteur de tension à l'arrière du détecteur. L'échantillonneur automatique thermostaté se compose de deux modules :

AVERTISSEMENT^{L'instrument} est partiellement alimenté lorsqu'il est éteint

En effet, l'alimentation consomme encore de l'énergie, même si l'interrupteur situé sur le panneau avant est en position d'arrêt (OFF).

Pour déconnecter le détecteur du secteur, débranchez le cordon d'alimentation.

AVERTISSEMENT Tension de secteur incorrecte au niveau du dispositif

Si l'appareil est alimenté sous une tension de secteur supérieure à la tension spécifiée, il y a un risque d'électrocution ou de détérioration des instruments.

Connectez votre dispositif à la tension de secteur indiquée.

ATTENTION

Laisser libre l'accès à la fiche d'alimentation.

En cas d'urgence, il faut pouvoir à tout moment déconnecter l'instrument de l'alimentation électrique.

- Vérifiez que le connecteur d'alimentation sur l'instrument est facile à atteindre et à débrancher.
- Laissez un espace suffisant derrière la prise de courant de l'instrument pour permettre le débranchement du câble.

Câbles d'alimentation

Différents câbles d'alimentation peuvent équiper le détecteur. L'extrémité femelle est la même pour tous les câbles. Elle s'insère dans l'embase d'alimentation à l'arrière du détecteur. L'extrémité mâle, destinée à s'adapter à la prise de courant murale, varie selon le pays ou la région.

AVERTISSEMENT Choc électrique

L'absence de mise à la terre et l'utilisation d'un cordon d'alimentation non recommandé peut entraîner des chocs électriques ou des courts-circuits.

- N'utilisez jamais une prise de courant sans mise à la terre.
- N'utilisez jamais de cordon d'alimentation autre que le modèle Agilent Technologies destiné à votre pays.

AVERTISSEMENT Utilisation de câbles non fournis

L'utilisation de câbles qui ne sont pas fournis par Agilent Technologies peut endommager les composants électroniques ou provoquer des blessures.

 Pour un bon fonctionnement et le respect des normes de sécurité ou de compatibilité électromagnétique, utilisez uniquement les câbles fournis par Agilent Technologies. 2 Conditions requises sur site et spécifications Conditions requises sur site

Encombrement de paillasse

Les dimensions et le poids du détecteur (voir Tableau 2, page 23) permettent de le placer sur pratiquement n'importe quelle paillasse de laboratoire. Il requiert un espace supplémentaire de 2,5 cm des deux côtés et d'environ 8 cm à l'arrière pour la circulation d'air et les raccordements électriques.

Si la paillasse doit accueillir un système Agilent série 1200, assurez-vous qu'elle peut supporter le poids de tous les modules.

En fonctionnement, le détecteur doit être en position horizontale.

Environnement

Votre détecteur fonctionne dans le cadre des spécifications, aux températures et à l'humidité relative ambiantes décrites dans le Tableau 2, page 23.

Pour les mesures de dérive ASTM, la variation de température doit être inférieure à 2 °C/heure pendant une heure. Les spécifications de dérive que nous avons publiées (voir également « Spécifications des performances », page 24) sont basées sur ces conditions. Des variations plus importantes de la température ambiante entraînent une dérive plus importante.

Les performances en matière de dérive sont d'autant meilleures que les fluctuations de température sont mieux maîtrisées. Pour obtenir les performances optimales, il faut réduire au minimum la fréquence et l'amplitude des variations de température (moins de 1 °C par heure). Les perturbations d'une durée inférieure ou égale à la minute peuvent être ignorées.

ATTENTION

Condensation à l'intérieur du détecteur

La condensation détériorera les circuits électroniques.

- Évitez d'entreposer, d'expédier ou d'utiliser votre détecteur dans des conditions telles que les fluctuations de température risquent de provoquer de la condensation à l'intérieur du détecteur.
- Si votre détecteur a été expédié par temps froid, laissez-le s'adapter lentement à la température ambiante dans son emballage, pour éviter toute condensation.

Caractéristiques physiques

Туре	Spécification	Commentaires
Pondération	11 kg	
Dimensions (hauteur × largeur × profondeur)	140 × 345 × 435 mm	
Tension	de 100 à 240 VCA, ± 10%	Plage étendue
Fréquence	50 ou 60 Hz, ± 5 %	
puissance consommée	220 VA, 85 W/290 BTU	Maximum
Température ambiante en fonctionnement	De 0 à 55 °C	
Température ambiante hors fonctionnement	De40 à 70 °C	
Humidité	< 95 %, de 25 à 40 °C	Sans condensation
Altitude de fonctionnement	Jusqu'à 2 000 m	
Altitude hors fonctionnement	Jusqu'à 4 600 m	Pour entreposer l'instrument
Normes de sécurité : IEC, CSA, UL, EN	Catégorie d'installation II, degré de pollution 2. Pour utilisation en intérieur uniquement.	

Tableau 2 Caractéristiques physiques

Spécifications des performances

Туре	Spécification	Commentaires
Type de détection	photomètre double faisceau	
Source lumineuse	Lampe au deutérium	
Gamme de longueurs d'onde	De 190 à 600 nm	
Bruit à court terme (ASTM)	± 0,75 × 10-5 DO à 254 nm	Voir la NOTE sous la table.
Dérive	3 × 10-4 D0/h à 254 nm	Voir la NOTE sous la table.
Linéarité	> 2 DO (5 %) limite supérieure	Voir la NOTE sous la table.
Précision de la longueur d'onde	1 nm	Auto-étalonnage avec lignes deutérium, vérification avec filtre d'oxyde d'holmium
Bande passante	6,5 nm type	
Cuves à circulation	Standard : volume 14 µl, longueur de trajet 10 mm et pression maximale de 40 bars (588 psi) Haute pression : volume 14 µl, longueur de trajet 10 mm et pression maximale de 400 bars (5 880 psi) Micro : volume 1 µl, longueur de trajet 5 mm et pression maximale de 40 bars (588 psi) Semi-micro : volume 5 µl, longueur de trajet 6 mm et pression maximale de 40 bars (588 psi)	Peut être réparée au niveau du composant
Contrôle et évaluation des données	ChemStation Agilent pour CLHP	
Sorties analogiques	Enregistreur/intégrateur : 100 mV ou 1 V, gamme de sortie 0,001 – 2 DO, une sortie	
Communications	Bus CAN, GPIB, RS-232C, commande à distance CAG : signaux ready, start, stop et shut-down, LAN (en option)	GPIB pour G1314B uniquement

 Tableau 3
 Détecteur à longueur d'onde variable Agilent série 1200 - Spécifications des performances

Conditions requises sur site et spécifications 2

Spécifications des performances

Туре	Spécification	Commentaires
Maintenance et sécurité	Diagnostics étendus, détection et affichage des erreurs (par le module de commande et la ChemStation Agilent), détection des fuites, traitement des fuites, signal de détection des fuites pour arrêt du système de pompage. Tensions basses dans les principales zones d'intervention.	
Fonctions BPL	Maintenance prédictive pour le suivi continu de l'utilisation de l'instrument en matière de temps d'usure des lampes avec des limites réglables par l'utilisateur et des messages d'information. Enregistrements électroniques des activités de maintenance et des erreurs. Vérification de l'exactitude des longueurs d'onde avec le filtre d'oxyde d'holmium intégré.	
Boîtier	Matériaux recyclables.	

REMARQUE

ASTM : "Pratiques standard pour les détecteurs photométriques à longueur d'onde variable utilisés en chromatographie en phase liquide". Conditions de référence : longueur de trajet de cuve 10 mm, temps de réponse 2 s, débit 1ml/min, méthanol qualité CLHP. Linéarité mesurée avec de la caféine à 265 nm.

2 Conditions requises sur site et spécifications

Spécifications des performances

VWD série 1200 Manuel d'utilisation

3 Installation du détecteur

Déballage du détecteur 28 Optimisation de la configuration de la pile de modules 30 Installation du détecteur 33 Raccordements des fluides au détecteur 36

Ce chapitre décrit l'installation du détecteur.

Déballage du détecteur

Emballage endommagé

Si l'emballage n'est pas en parfait état, alertez immédiatement Agilent. Informez-en également votre ingénieur de maintenance Agilent.

REMARQUE

N'installez pas le détecteur s'il présente des signes de détérioration.

Liste de contrôle de livraison

Assurez-vous que tous les éléments ont bien été livrés avec le détecteur. Aidez-vous de la liste de contrôle de livraison ci-dessous. Si vous constatez une pièce manquante ou endommagée, contactez votre agence commerciale Agilent Technologies.

 Tableau 4
 Liste de contrôle du détecteur à longueur d'onde variable

Description	Quantité
Détecteur à longueur d'onde variable (VWD)	1
Câble d'alimentation	1
Cuve à circulation	Selon commande
Manuel d'utilisation	1
Kit d'accessoires (Tableau 5, page 29)	1

Contenu du kit d'accessoires du détecteur

Tableau 5	Contenu du	kit d	'accessoires
Iubiouu o	oontonu uu	INIC U	400000000000000000000000000000000000000

Description	Référence	Quantité	
Kit d'accessoires	G1314-68705		
Câble CAN 0,5 m	5181-1516	1	
Kit capillaire de sortie PEEK	5062-8535	1	
Raccord mâle PEEK	0100-1516	1	
Clé mâle 6 pans 1,5 mm	8710-2393	1	
Clé mâle 6 pans 4 mm	8710-2392	1	
Clé plate de 1/4 à 5/16"	8710-0510	1	
Clé plate de 4 mm	8710-1534	1	

Optimisation de la configuration de la pile de modules

Optimisation de la configuration de la pile de modules

Si votre détecteur fait partie d'un système complet de modules Agilent série 1200, la configuration suivante vous donnera les meilleures performances. En effet, elle optimise le trajet du débit, garantissant un volume de retard minimum.

Installation du détecteur 3

Optimisation de la configuration de la pile de modules

Figure 5 Configuration de la pile recommandée (Vue avant)

3 Installation du détecteur

Optimisation de la configuration de la pile de modules

Installation du détecteur

Parts required

Détecteur

Câble d'alimentation (pour les autres câbles, voir ci-dessous, ainsi que la section Tableau 22, page 119)

ChemStation et/ou module de commande G1323B

Preparations required

- Déterminez l'emplacement sur la paillasse.
- Prévoyez les branchements d'alimentation.
- Déballer le détecteur.
- 1 Installez la carte d'interface LAN dans le détecteur (si nécessaire), voir « Remplacement de la carte d'interface », page 98.
- **2** Placer le détecteur dans la pile de modules ou sur la paillasse en position horizontale.
- **3** Assurez-vous que l'interrupteur à l'avant de l'appareil est en position d'arrêt (OFF).

Figure 7 Vue avant du détecteur

3 Installation du détecteur Installation du détecteur

REMARQUE

La figure ci-dessus vous montre la cuve à circulation déjà installée. La zone de la cuve à circulation est fermée par un panneau métallique. La cuve à circulation doit être installée comme l'indigue la section « Raccordements des fluides au détecteur », page 36.

- 4 Branchez le câble d'alimentation au connecteur prévu à cet effet à l'arrière du détecteur.
- **5** Branchez le câble CAN aux autres modules Agilent série 1200.
- 6 Si une ChemStation Agilent est utilisée pour piloter les instruments, branchez
 - le câble LAN à la carte d'interface LAN du détecteur.

REMARQUE

Si le système comporte un DAD/MWD/FLD Agilent 1200, le câble LAN doit être connecté au DAD/MWD/FLD (en raison de charges de données plus importantes).

- 7 Branchez le câble analogique (facultatif).
- 8 Branchez le câble de commande à distance CAG (facultatif) pour les appareils qui ne sont pas des instruments Agilent série 1200.

AVERTISSEMENT L'instrument est partiellement alimenté lorsqu'il est éteint

En effet, l'alimentation consomme encore de l'énergie, même si l'interrupteur situé sur le panneau avant est en position d'arrêt (OFF).

- Pour déconnecter le détecteur du secteur, débranchez le cordon d'alimentation.
- 9 Mettez l'appareil sous tension en appuyant sur le bouton situé dans l'angle inférieur gauche du détecteur. Le voyant d'état doit être vert.

REMARQUE Quand le détecteur est sous tension, l'interrupteur est enfoncé et son voyant vert, allumé. Le détecteur est HORS tension lorsque l'interrupteur fait saillie et le voyant vert est éteint.

REMARQUE

Le détecteur a été livré avec des paramètres de configuration par défaut.

3 Installation du détecteur Raccordements des fluides au détecteur

Raccordements des fluides au détecteur

Parts required

Autres modules

Pièces du kit d'accessoires, voir Tableau 5, page 29 Deux clés de 1/4"–5/16" pour les raccordements capillaires

Preparations required

Le détecteur est installé dans le système CLHP.

AVERTISSEMENT Solvants toxiques et dangereux

La manipulation des solvants et des réactifs présente des risques pour la santé.

 Lorsque vous manipulez des solvants, observez les règles de sécurité (port de lunettes, de gants et de vêtements de protection) figurant dans la documentation fournie par le fournisseur du solvant, particulièrement s'il s'agit de produits toxiques ou dangereux.

REMARQUE

La cuve à circulation est livrée remplie d'isopropanol (remplissez-la de même avant tout déplacement de l'instrument et/ou de la cuve). Le but est d'éviter qu'elle ne se brise sous l'effet de conditions sub-ambiantes.

3 Installation du détecteur

Raccordements des fluides au détecteur

L'installation du détecteur est terminée.

REMARQUE

En fonctionnement, le couvercle avant du détecteur doit être en place afin de protéger la zone de la cuve à circulation des forts courants d'air extérieurs.

VWD série 1200 Manuel d'utilisation

4

Utilisation du détecteur

Configuration d'une analyse 40 Avant d'utiliser le système 40 Exigences et conditions 42 Optimisation du système 44 Préparation du système CLHP 44 Analyse de l'échantillon et vérification des résultats 54 Paramètres spéciaux du détecteur 55 Paramètres de contrôle 55 Spectres en temps réel 56 Balayage avec le VWD 57 Paramètres de sortie analogique 58 Points de consigne spécifiques 59 Paramètres de largeur de pic 59 Optimisation du détecteur 61

Ce chapitre contient des informations sur la configuration du détecteur pour une analyse et décrit les paramètres de base.

Configuration d'une analyse

Reportez-vous à ce chapitre pour

- préparer le système,
- apprendre à configurer une analyse CLHP et
- l'utiliser comme outil de vérification des instruments pour vous assurer que tous les modules du système sont correctement installés et branchés. Il ne s'agit pas d'un test des performances des instruments.
- En savoir plus sur les paramètres spéciaux.

Avant d'utiliser le système

Informations sur les solvants

Respectez les recommandations relatives à l'utilisation des solvants décrites dans le chapitre consacré aux solvants, dans le manuel de référence de la pompe.

Amorçage et purge du système

Lorsque les solvants ont été changés ou que le système de pompage est resté hors tension pendant un certain temps (par exemple, une nuit), de l'oxygène se rediffuse dans les tuyaux de solvant entre le réservoir de solvant, le dégazeur à vide (si le système en possède un) et la pompe. Les produits volatils contenus dans certains solvants s'évaporent légèrement. C'est pourquoi vous devez amorcer le système de pompage avant de lancer une application.

Activité	Solvant	Commentaires
Après installation	Isopropanol	Meilleur solvant pour éliminer l'air du système
Lorsqu'on passe d'une phase inverse à une phase normale (et vice-versa)	lsopropanol	Meilleur solvant pour éliminer l'air du
		système
Après installation	Éthanol ou Méthanol	Solvant alternatif en l'absence d'isopropanol (second choix)
Pour nettoyer le système lorsqu'on utilise des tampons	Eau bidistillée	Meilleur solvant pour redissoudre les cristaux de tampon
	Eau bidistillée	
Après un changement de solvant		Meilleur solvant pour redissoudre les cristaux de tampon
Après l'installation de joints de pompe (réf. 0905-1420)	Hexane + 5 % d'isopropanol	Bonnes caractéristiques de mouillage

Tableau 6Choix de solvants d'amorçage pour divers usages

REMARQUE

La pompe ne doit jamais être utilisée pour amorcer des tuyaux vides (ne jamais laisser la pompe fonctionner à sec). Utilisez une seringue pour aspirer une quantité de solvant suffisante de manière à remplir complètement les tuyaux à l'entrée de la pompe avant de continuer à amorcer à l'aide de la pompe.

- 1 Ouvrez la vanne de purge de la pompe (en la tournant dans le sens inverse des aiguilles d'une montre) et réglez le débit sur 3 à 5 ml/min.
- 2 Rincez tous les tuyaux avec 30 ml de solvant au moins.
- **3** Réglez le débit en fonction de votre application et fermez la vanne de purge.

REMARQUE Pompez pendant environ 10 minutes avant de lancer l'application.

Exigences et conditions

Configuration requise

Le Tableau 7, page 42 répertorie les éléments dont vous avez besoin pour configurer l'analyse. Certains d'entre eux sont facultatifs (il ne sont pas nécessaires pour le système de base).

Système 1200	Pompe (plus dégazage)					
	Agilent 1100/1200					
	Détecteur, avec cuve à circulation standard					
	Dégazeur (facultatif)					
	Compartiment à colonne (facultatif)					
	Détecteur - FLD ou RID (facultatif), avec cuve à circulation standard					
	ChemStation Agilent (B.02.01 et ultérieure) ou Instant Pilot G4208 (A.01.01 et ultérieure) (facultatif pour les opérations de base) ou module de commande G1323B (B.04.02 et supérieure) (facultatif pour les opérations de base), voir la remarque ci-dessous.					
	Le système doit être correctement configuré pour communiquer sur le réseau local avec la ChemStation Agilent.					
Colonne :	Zorbax Eclipse XDB-C18, 4,6 x 150 mm, 5 µm Réf. 993967-902 ou 5063-6600					
Standard :	Réf. 01080-68704 0,15 % pds phtalate de diméthyle, 0,15 % pds phtalate de diéthyle, 0,01 % pds biphényle, 0,03 % pds o-terphényle dans le méthanol					
	FLD – Dilution à 1:10 dans l'acétonitrile					

 Tableau 7
 Éléments requis

REMARQUE

Le VWD-SL G1314C peut être piloté par un module de commande G1323B simplement en mode standard, comme le G1314B. Il n'est pas possible de sélectionner un débit de données supérieur.

Conditions

Dans les conditions précisées dans le Tableau 8, page 43, une seule injection de l'étalon test isocratique est effectuée :

Débit	1,5 ml/minute
Temps d'arrêt	8 minutes
Solvant	100 % (30 % d'eau/70 % d'acétonitrile)
Température	Ambiante
Longueur d'onde	échantillon 254 nm
Détecteur FLD à longueur d'onde (facultatif) :	Excitation : 246 nm, Émission : 317 nm
Gain du PM FLD :	10
Température optique RID (facultatif) :	Aucun
RID – Polarité :	Positive
Volume d'injection	et FLD 1 µl RID : 20 µl
Température de la colonne (facultatif) :	25 °C ou ambiante

Tableau 8 Conditions

Chromatogramme type

Un chromatogramme type de cette analyse est illustré à la Figure 9, page 44. Le profil exact du chromatogramme dépend des conditions chromatographiques. Des variations de qualité des solvants, de remplissage de colonne, de concentration de l'étalon et de température de colonne peuvent avoir un impact sur la rétention et la réponse des pics.

Configuration d'une analyse

Figure 9 Chromatogramme type avec détecteur UV

Optimisation du système

Les paramètres utilisés pour cette analyse ne sont valables que pour cet objectif. Pour d'autres applications, le système peut être optimisé de différentes manières. Consultez éventuellement la section « Optimisation du détecteur », page 61 ou celle consacrée à l'optimisation dans le manuel de référence de votre module.

Préparation du système CLHP

- 1 Allumez le PC et le moniteur de la ChemStation Agilent.
- **2** Allumez les modules CLHP série 1200.
- **3** Démarrez le logiciel ChemStation Agilent (B.02.01). Si la pompe, l'échantillonneur automatique, le compartiment à colonne thermostaté et le

Utilisation du détecteur 4 Configuration d'une analyse

détecteur sont trouvés, l'écran de la ChemStation ressemble à la Figure 10, page 45. L'état du système est rouge (Not Ready (Non prêt)).

- **Figure 10** Écran initial de la ChemStation (Method and Run Control (Contrôle de méthode et d'analyse))
- **4** Allumez la lampe du détecteur, la pompe et l'échantillonneur automatique en cliquant sur le bouton System On (Système sous tension) ou sur les boutons situés sous les icônes des modules dans l'interface utilisateur.

Au bout d'un certain temps, la pompe, le compartiment à colonne thermostaté et le détecteur passent au vert.

Configuration d'une analyse

Figure 11 Allumage du module CLHP

5 Purgez la pompe. Pour plus d'informations, reportez-vous à « Amorçage et purge du système », page 40.

6 Laissez le détecteur se réchauffer pendant au moins 60 minutes pour fournir une ligne de base plus stable (exemple : Figure 12, page 47).

REMARQUE

Pour obtenir une chromatographie reproductible, le détecteur et la lampe doivent être sous tension pendant au moins une heure. Sinon, la ligne de base du détecteur peut continuer à dériver (selon l'environnement).

Figure 12 Stabilisation de la ligne de base

- **7** Remplissez la bouteille de solvant de la pompe isocratique avec un mélange d'eau bidistillée de qualité CLHP (30 %) et d'acétonitrile (70 %). Pour les pompes binaires et quaternaires, vous pouvez utiliser des bouteilles séparées.
- 8 Cliquez sur le bouton Load Method (Charger la méthode), sélectionnez DEF_LC.M, puis cliquez sur OK. Vous pouvez aussi double-cliquer sur la méthode dans la fenêtre correspondante. Les paramètres de la méthode CPL par défaut sont transférés aux modules 1200.

Configuration d'une analyse

Figure 13 Chargement de la méthode CPL par défaut

9 Cliquez sur les icônes de module (Figure 14, page 49) et ouvrez le menu
Setup (Configuration) de chaque module. La Figure 15, page 50 montre les paramètres du détecteur (ne les modifiez pas à ce stade).

Figure 14 Ouverture du menu du module

Entrez les paramètres de pompe présentés dans la section Tableau 8, page 43.

Configuration d'une analyse

VWD Signal : System-2	×
Signal	- Time
Wavelength:	<u>S</u> toptime:
254 nm	as Pump 🚔 min no Limit 🚽 min
Peakwidth (Responsetime)	<u>P</u> osttime:
> 0.1 min (2 s)	Off 🚊 min
imetable:	
Line Time Wavelength Bal	ance Scan <u>Insert</u>
	Append
	Cut
	Сору
	Paste
• Table O Graphic	
<u>O</u> K Cancel <u>H</u>	<u>H</u> elp <u>M</u> ore >>
	×
	Analog Output
	Zero Offset:
	5 %
	Attenuation:
	1000 T mAU
	Store additionally
	🔲 Signal w/o
	Reference
	Autobalance
	Prerun
	🗖 Postrun
	- Special Setpoints
	Setup

Figure 15 Paramètres du détecteur (par défaut)

- 1 signal avec paramètre de longueur d'onde individuel
- Possibilité de paramétrage du temps d'arrêt et de post-analyse (si nécessaire)
- La largeur des pics dépend des pics du chromatogramme, voir « Paramètres de largeur de pic », page 59.
- Table des événements destinée aux actions programmables pendant l'analyse.

- Zero Offset Limits (Limites de décalage zéro) : de 1 à 99 % par incréments de 1 %
- Attenuation Limits (Limites de l'atténuation) : 0,98 à 4 000 mDO à des valeurs discrètes pour pleine échelle de 100 mV ou 1 V.
- Possibilité de stocker d'autres signaux avec le signal normal (pour le diagnostic).
- Stabilisation automatique à un niveau d'absorbance nulle (sur la sortie analogique plus décalage) en début et/ou en fin d'analyse.
- voir « Points de consigne spécifiques », page 59.

- **10** Pompez la phase mobile eau/acétonitrile (30/70 %) via la colonne pendant 10 minutes pour stabilisation.
- 11 Cliquez sur le bouton et sélectionnez Change... (Modifier...) pour ouvrir l'écran informations sur Signal Plot (Tracé des signaux). Sélectionnez les signaux Pump : Pressure (Pompe : Pression) et VWD A : Signal 254 (VWD A : Signal 254). Paramétrez la gamme des Y du VWD sur 1 mDO, le décalage sur 20 % et le décalage de la pression sur 50 %. La gamme de l'axe des X doit être réglée sur 15 minutes. Cliquez sur OK pour quitter cet écran.

Figure 16 Fenêtre Edit Signal Plot (Modifier le tracé des signaux)

Le tracé en ligne (Figure 17, page 52) affiche le signal de pression de la pompe et celui de l'absorbance du détecteur. Le bouton Adjust (Régler) permet de rétablir la valeur de décalage des signaux. En cliquant sur Balance (Stabiliser), vous déclenchez un auto-zéro du détecteur.

Configuration d'une analyse

Figure 17 Fenêtre Online Plot (Tracé en ligne)

12 Si les deux lignes de base sont stables, réglez la gamme des Y du signal du détecteur sur 100 mDO.

REMARQUE

Si vous utilisez une lampe UV neuve, il est possible que la lampe montre une dérive initiale pendant un certain temps (effet de rodage).

13 Sélectionnez RunControl (Contrôle d'analyse) -> Sample Info (Informations sur l'échantillon) et saisissez les informations relatives à cette application (Figure 18, page 53). Cliquez sur OK pour quitter cet écran.

Run Method	F5	C.M	
Sample Info Offline Data Analysis		th Sample Info: System-2	
Resume Injection			
Run Sequence Pause Sequence Resume Sequence	F6	Data File Path: E:\CHEMSTATION\2\DATA\ Subdirectory: ISOTEST	
Stop Run/Inject/Seque	nce F8	© Manual Filename ISO_01.D © Prefix/Counter	
		- Sample Parameters	
		Sample Parameters Logation: Vial 1 (blank run if no entry)	
		Sample Parameters Logation: Vial 1 Sample Name: Isocratic test sample Sample Amount: 0 Multiplier: 1 ISTD Amount: 0	

Figure 18 Informations sur l'échantillon

14 Versez le contenu d'une ampoule d'échantillon étalon isocratique dans un flacon et fermez ce dernier avec un bouchon, puis placez-le dans le plateau de l'échantillonneur automatique (position 1).

Analyse de l'échantillon et vérification des résultats

- 1 Pour lancer une analyse, dans la barre de menus, sélectionnez **RunControl** (Contrôle d'analyse) -> **Run Method** (Démarrer l'analyse).
- **2** Vous démarrez ainsi les modules 1200 et le tracé en ligne sur la ChemStation Agilent affiche le chromatogramme résultant.

Figure 19 Chromatogramme avec échantillon de test isocratique

REMARQUE

Vous trouverez des informations sur l'utilisation des fonctions d'analyse de données dans le manuel d'utilisation de la ChemStation fourni avec votre système.

Paramètres spéciaux du détecteur

Ce chapitre décrit les paramètres spéciaux du VWD G1314B et du VWD-SL G1314C (pour la ChemStation Agilent B.02.01).

Paramètres de contrôle

🔄 Set up VWD Signal	VWD Control : System-2			
Control		Error Method		
중 Help	C off	Analog Output <u>B</u> ange		
	At Power On	Lamp Type		
	Automatic Turn On Turn lamp on at: Date: 29.12.20 Time: 11:20:03	05 <dd.mm.yyyy> <hh:mm:ss></hh:mm:ss></dd.mm.yyyy>		
	<u><u> </u></u>	Cancel <u>H</u> elp		

Figure 20 Paramètres de contrôle du détecteur

- Lamp : allumet et éteindre la lampe UV.
- At power on (Sous tension) : I a lampe s'allume automatiquement.
- Error Method (Méthode d'erreur) : utiliser la méthode d'erreur ou la méthode actuelle (en cas d'erreur).
- Analog Output Range (Gamme de sortie analogique) : peut prendre la valeur 100 mV ou 1 V pleine échelle, voire « Paramètres de sortie analogique », page 58.
- Lamp Type (*Type de lampe*) : peut prendre la valeur G1314-60100 (lampe standard VWD) ou 2140-0590 (lampe DAD), voire « Remplacement d'une lampe », page 83.
- Automatic turm on (Allumage automatique) : les lampes peuvent être programmées (pour cela, le détecteur doit être allumé).
- Help : aide en ligne.

Paramètres spéciaux du détecteur

Spectres en temps réel

1 Pour afficher les spectres en temps réel, sélectionnez Online Spectra (Spectres en temps réel).

Ce spectre en temps réel est pris durant un "stop-flow" uniquement pendant que le pic reste dans la cuve à circulation. Voir « Balayage avec le VWD », page 57.

Figure 21 Fenêtre Online Spectra (Spectres en temps réel)

2 Modifiez les gammes d'absorbance et de longueur d'onde en fonction de vos besoins.

Balayage avec le VWD

REMARQUE

L'accès à la fonction de balayage est possible uniquement durant l'analyse.

- **1** Configurez une analyse.
- 2 Démarrez une analyse.
- 3 Pendant l'analyse sur la ligne de base, sélectionnez Instrument (Instrument)
 More VWD (Autres paramètres de VWD) Blank Scan (Balayage du bruit de fond), Figure 22, page 57.

Un balayage du bruit de fond est stocké en mémoire.

Figure 22 Prise de spectres en temps réel

4 Lorsque le pic concerné entre dans la cuve à circulation, stoppez le débit (réglez le débit sur zéro ou ouvrez la vanne de purge) et attendez quelques instants pour stabiliser la concentration.

Paramètres spéciaux du détecteur

REMARQUE

Arrêter la pompe aurait pour effet de stopper l'analyse et il serait impossible d'accéder au balayage de l'échantillon.

5 Sélectionnez **Instrument** (Instrument) - **More VWD** (Autres paramètres de VWD) - **Sample Scan** (Balayage de l'échantillon).

Un balayage de l'échantillon est réalisé dans la gamme définie dans la rubrique « Points de consigne spécifiques », page 59 et la fenêtre Online Spectra (Spectres en temps réel) (voir « Spectres en temps réel », page 56) affiche le résultat (Sample Scan (Balayage de l'échantillon) moins Blank Scan (Balayage du bruit de fond)).

Paramètres de sortie analogique

- 1 Pour modifier la gamme de sortie des sorties analogiques, sélectionnez **VWD Control** (Contrôle du VWD).
- 2 Pour modifier le décalage et l'atténuation, sélectionnez VWD Signal (Signal du VWD) More (Plus).
- **3** Remplacez les valeurs au besoin.
 - Analog Output Range (Gamme de sortie analogique) : peut prendre la valeur 100 mV ou 1 V pleine échelle.
 - *Zero Offset (Décalage zéro) :* peut prendre la valeur 100 mV ou 1 V pleine échelle.
 - *Attenuation Limits (Limites de l'atténuation) :* 0,98 à 4 000 mDO à des valeurs discrètes pour pleine échelle de 100 mV ou 1 V.

Points de consigne spécifiques

- 1 Pour modifier le décalage et l'atténuation, sélectionnez VWD Signal (Signal du VWD) More (Plus) Special Setpoints (Points de consigne spécifiques).
 - Margin for negative Absorbance (Marge pour une absorbance négative) : Ce champ permet de modifier le traitement des signaux du détecteur afin d'augmenter la marge d'absorbance négative. Utilisez cette option, par exemple, si le gradient de solvant génère une absorbance de ligne de base décroissante, ainsi que pour les analyses de GPC.

Limites : de 100 à 4 000 mDO.

REMARQUE

Margin for negative Absorbance (Marge pour une absorbance négative) : Plus la valeur est élevée, plus le bruit de la ligne de base est important. Définissez cette valeur uniquement si vous prévoyez une absorbance négative supérieure à -100 mDO.

- **Signal Polarity (Polarité du signal)** : vous pouvez opter pour une valeur négative (si nécessaire).
- Enable analysis when lamp is off (Activer l'analyse lorsque la lampe est éteinte) : si le détecteur à longueur d'onde variable (VWD) n'est pas utilisé dans le cadre d'une configuration double détecteur (lampe éteinte), l'état non prêt n'arrête pas l'analyse.
- Scan Range (Gamme de balayage)/Step (Pas) : Utilisé pour le balayage stop-flow, « Balayage avec le VWD », page 57.

Paramètres de largeur de pic

REMARQUE

N'utilisez pas une largeur de pic trop faible. Voir aussi « Définir les paramètres du détecteur », page 67.

1 Pour modifier les paramètres de largeur de pic, sélectionnez Setup Detector Signals (Configurer les signaux du détecteur).

Paramètres spéciaux du détecteur

- **2** Dans la section Peakwidth (Responsetime) (Largeur de pic (temps de réponse)), cliquez sur la liste déroulante.
- **3** Modifiez la largeur de pic selon vos besoins.

REMARQUE Le champ **Peakwidth** (Largeur de pic) vous permet de sélectionner la largeur des pics (temps de réponse) de votre analyse. Il s'agit de la largeur d'un pic, en minutes, à mi-hauteur de ce dernier. Paramétrez la largeur de pic sur le pic le plus étroit attendu dans votre chromatogramme. La largeur du pic détermine le temps de réponse optimal du détecteur. Le détecteur de pics ignore les pics dont la largeur est sensiblement plus étroite ou plus importante que la valeur choisie. Le temps de réponse correspond au délai compris entre 10 % et 90 % du signal de sortie, en réponse à une fonction pas à pas. Lorsque vous sélectionnez l'option de stockage All Spectra (Tous les spectres), les spectres sont acquis en continu, en fonction de la largeur de pic définie. Le temps spécifié par la largeur de pic est utilisé comme facteur dans l'acquisition de spectres. Le temps d'acquisition d'un spectre est légèrement inférieur à la largeur du pic divisée par 8 ; voir Tableau 9, page 60.

Limits (Limites): Lorsque vous configurez la largeur du pic (en minutes), le temps de réponse correspondant est défini de manière automatique. Le débit de données approprié d'acquisition de signaux est sélectionné comme l'indique le Tableau 9, page 60.

Largeur de pic (min)	Temps de réponse (s)	Débit de données (Hz) 13.74		
<0.005	0.12			
>0.005	0.12	13.74		
>0.01	0.25	13.74		
>0.025	0.5	13.74		
>0.05	1.0	6.87		
>0.10	2.0	3.43		
>0.20	4.0	1.72		
>0.40	8.0	0.86		

Tableau 9 Largeur de pic — Temps de réponse — Débit de données (VWD G1314B)

Paramètres spéciaux du détecteur

Largeur de pic (min)	Temps de réponse (s)	Débit de données (Hz)
<0.00125	<0.031	55
>0.00125	0.031	27.5
>0.0025	0.062	13.74
>0.005	0.12	13.74
>0.01	0.25	13.74
>0.025	0.5	13.74
>0.05	1.0	6.87
>0.10	2.0	3.43
>0.20	4.0	1.72
>0.40	8.0	0.86

 Tableau 10
 Largeur de pic — Temps de réponse — Débit de données (VWD SL G1314C)

Optimisation du détecteur

Vous trouverez des informations théoriques supplémentaires dans le chapitre « Comment optimiser le détecteur », page 63.

Paramètres spéciaux du détecteur

VWD série 1200 Manuel d'utilisation

Comment optimiser le détecteur

Optimisation des performances du détecteur64Faire correspondre la cuve à circulation à la colonne64Définir les paramètres du détecteur67

Ce chapitre propose des conseils relatifs à la sélection des paramètres du détecteur et de la cuve à circulation.

5

Optimisation des performances du détecteur

Le détecteur possède divers paramètres que l'on peut utiliser pour optimiser ses performances.

Les informations ci-après vous indiquent la manière de procéder pour obtenir les meilleures performances du détecteur. Suivez ces règles pour démarrer de nouvelles applications. Elles donnent des règles empiriques pour optimiser les paramètres du détecteur.

Faire correspondre la cuve à circulation à la colonne

La Figure 23, page 64 recommande la cuve à circulation qui correspond à la colonne utilisée. Si plus d'une sélection convient, utilisez la plus grande cuve à circulation pour obtenir la meilleure limite de détection. Et utilisez la plus petite pour obtenir la meilleure résolution de pics.

Longueur de la color	ineLargeur du pic type	Cuve à circulation recommandée			
<= 5 cm	0,025 min	micro Cuve à circulation			
10 cm	0,05 min		Cuve à circulation semi-micro		
20 cm	0,1 min	Cuve à circulation standard			
>= 40 cm	0,2 min				
	Débit type	0,05 - 0,2 ml/min	0,2 - 0,4 ml/min	0,4 - 0,8 ml/min	1 - 2 ml/min
Diamètre de la colonne interne		1,0 mm	2,1 mm	3,0 mm	4,6 mm

Figure 23 Choix d'une cuve à circulation

Longueur du trajet de la cuve à circulation

La loi de Lambert-Beer montre une relation linéaire entre la longueur du trajet de la cuve à circulation et l'absorbance.

Absorbance =
$$-\log T = \log \frac{I_0}{I} = \varepsilon \cdot C \cdot d$$

où

- **T** est la transmission, définie comme le quotient de l'intensité de la lumière I transmise divisée par l'intensité de la lumière incidente, I_0 ,
- e est le coefficient d'extinction, c'est-à-dire la caractéristique d'une substance donnée pour un ensemble précisément défini de conditions de longueur d'onde, de solvant, de température et autres paramètres,
- **C** est la concentration des espèces absorbantes (généralement en g/l ou mg/l), et
- d est la longueur de trajet de la cuve utilisée pour la mesure.

Par conséquent, les cuves à circulation avec des longueurs de trajet plus longues produisent des signaux plus élevés. Bien que le bruit augmente généralement peu avec la longueur de trajet, il y a augmentation du rapport signal/bruit. Par exemple, dans la Figure 24, page 66, le bruit a augmenté de moins de 10 %, mais une augmentation de 70 % de l'intensité du signal a été observée en portant la longueur du trajet de 6 mm à 10 mm.

Quand la longueur du trajet augmente, le volume de la cuve augmente généralement (dans notre exemple, de 5 à 13 μ l). En principe, cela entraîne une plus grande dispersion des pics. Comme le montre la Figure 24, page 66, cela n'a pas affecté la résolution de la séparation en gradient de notre exemple.

En règle générale, le volume de la cuve à circulation doit être d'environ 1/3 du volume du pic à mi-hauteur. Pour déterminer le volume de vos pics, prenez la largeur du pic telle qu'indiquée dans le rapport des résultats d'intégration, multipliez-la par le débit et divisez par 3.

5 Comment optimiser le détecteur

Optimisation des performances du détecteur

Figure 24 Influence de la longueur du trajet de la cuve sur la hauteur du signal

En général, les analyses par CL avec des détecteurs UV consistent à comparer des mesures à des étalons internes ou externes. Pour vérifier l'exactitude photométrique du VWD Agilent série 1200, des informations plus précises sur les longueurs de trajet des cuves à circulation du VWD sont nécessaires.

La réponse correcte est :

réponse attendue * facteur de correction

Des détails concernant les cuves à circulation du détecteur à longueur d'onde variable Agilent série 1200 sont donnés ci-après :

Tableau 11	Facteurs de correction pour les cuves à circulation du détecteur à longueur
	onde variable Agilent série 1200

Type de cuve	Volume de la cuve	Référence	Longueur du trajet (nominale)	Longueur du trajet (réelle)	Facteur de correction
Cuve à circulation standard	14 µl	G1314-60086	10 mm	10,15 ± 0,19 mm	10/10.15
Cuve à circulation semi-micro	5 µl	G1314-60083	6 mm	6.10 ± 0,19 mm	6/6.10
Cuve à circulation micro	1 µl	G1314-60081	5 mm	4.80 ± 0,19 mm	5/4.8
Cuve à circulation haute pression	14 µl	G1314-60082	10 mm	10,00 ± 0,19 mm	6/5.75

REMARQUE

Cependant, soyez conscient d'une tolérance supplémentaire de l'épaisseur du joint et son rapport de compression qui est supposé être très faible en comparaison de la tolérance de fabrication.

Définir les paramètres du détecteur

1 Définissez la bande passante le plus près possible de la largeur (à mi-hauteur) d'un pic étroit intéressant.

Largeur de pic à mi-hauteur	Temps de montée [de 10 à 90%]	Débit des données	Module
< 0,00125 minutes	< 0,031 secondes	54,96 Hz	G1314C
0,00125 minutes	0,031 secondes	27,48 Hz	G1314C
0,0025 minutes	0,062 secondes	13,74 Hz	G1314C
0.005 minutes	0,125 secondes	13,74 Hz	G1314B/G1314C
0,01 minutes	0.25 secondes	13,74 Hz	G1314B/G1314C
0,025 minutes	0,50 secondes	13,74 Hz	G1314B/G1314C
0,05 minutes	1 seconde	6,87 Hz	G1314B/G1314C
0,1 minutes	2 secondes	3,43 Hz	G1314B/G1314C
0.2 minutes	4 secondes	1.72 Hz	G1314B/G1314C
0,4 minutes	8 secondes	0,86 Hz	G1314B/G1314C

Tableau 12 Paramètres de largeur de pic

- 2 Choisissez la longueur d'onde de l'échantillon.
 - à une longueur d'onde supérieure à la longueur d'onde de coupure de la phase mobile,
 - à une longueur d'onde où les analytes ont une forte absorptivité si vous voulez obtenir la limite de détection la plus basse possible,
 - à une longueur d'onde avec une absorptivité modérée si vous travaillez avec de hautes concentrations, et

5 Comment optimiser le détecteur

Optimisation des performances du détecteur

- de préférence à l'endroit où le spectre est plat pour une meilleure linéarité.
- **3** Au besoin, utilisez la programmation dans le temps pour accroître l'optimisation.

REMARQUE

Le VWD-SL G1314C peut être piloté par un module de commande G1323B simplement en mode standard, comme le G1314B. Il n'est pas possible de sélectionner un débit de données plus élevé.

VWD série 1200 Manuel d'utilisation

Dépannage et diagnostic

Présentation des voyants d'état et des fonctions de test du détecteur 70 Voyants d'état 71 Voyant d'alimentation 71 Voyant d'état du détecteur 72 Interfaces utilisateur 73 Logiciel de diagnostic CPL Agilent 74

Généralités sur les fonctions de diagnostic et de dépannage.

Présentation des voyants d'état et des fonctions de test du détecteur

Présentation des voyants d'état et des fonctions de test du détecteur

Voyants d'état

Le détecteur comporte deux voyants qui indiquent son état (prêt, analyse, erreur). Ces voyants d'état permettent de vérifier d'un coup d'œil le fonctionnement du détecteur (« Voyants d'état », page 71).

Messages d'erreur

En cas de défaillance électronique, mécanique ou hydraulique, le détecteur génère un message d'erreur au niveau de l'interface utilisateur. Chaque message est accompagné d'une brève description de l'anomalie, d'une liste des causes probables du problème et d'une liste d'actions correctives suggérées (voir Troubleshooting and Diagnostics (Dépannage et diagnostic) dans le manuel d'entretien).

Fonctions de test

Une suite de fonctions de test est disponible pour la détection des anomalies/de pannes et la vérification opérationnelle après le remplacement d'éléments internes (voir Test Functions (Fonctions de test) dans le manuel d'entretien).

Vérification/réétalonnage des longueurs d'onde

Le réétalonnage en longueurs d'onde est recommandé après réparation des composants internes et aussi de manière régulière pour maintenir le détecteur en bon état de fonctionnement. Le détecteur utilise les lignes d'émission alpha et bêta deutérium pour l'étalonnage en longueurs d'onde (« Vérification/étalonnage des longueurs d'onde », page 104).

Signaux de diagnostic

Le détecteur possède plusieurs signaux (températures internes, tensions et courants des lampes) qui peuvent servir à diagnostiquer les problèmes relatifs à la ligne de base (voir le chapitre Diagnosis Signals (Signaux de diagnostic) dans le manuel d'entretien).

Voyants d'état

Deux voyants d'état se trouvent à l'avant du détecteur. Celui qui est situé en bas à gauche indique l'état de l'alimentation, celui du haut à droite l'état du détecteur.

avec voyant vert

Voyant d'alimentation

Le voyant d'alimentation est intégré à l'interrupteur marche/arrêt. Le voyant est allumé en *vert* quand la pompe est sous tension.

Voyant d'état du détecteur

Le voyant d'état du détecteur indique l'une des quatre conditions suivantes :

- Quand le voyant d'état est *ÉTEINT* (et que le voyant d'alimentation est allumé), le détecteur est en situation de *préanalyse*, c'est-à-dire qu'il est prêt à démarrer une analyse.
- Lorsque le voyant est *vert*, le détecteur est en train d'effectuer une analyse (mode *analyse*).
- Lorsque le voyant est *jaune*, l'instrument n'est *pas prêt*. Le détecteur attend alors qu'une condition spécifique soit réalisée (par exemple, aussitôt après le changement d'un point de consigne) ou pendant une procédure d'autotest.
- Lorsque le voyant est *rouge*, une *erreur* s'est produite. Une situation d'erreur indique que le détecteur a relevé un problème interne qui affecte son bon fonctionnement. Généralement, une condition d'erreur nécessite une intervention (par exemple, fuite, éléments internes défectueux). Une condition d'erreur interrompt toujours l'analyse.
- Si le voyant *clignote en rouge*, le module est en mode résident (par exemple, pendant la mise à jour du microprogramme principal).
Interfaces utilisateur

Les tests disponibles varient suivant l'interface utilisateur. Toutes les descriptions des tests sont basées sur l'interface utilisateur de la ChemStation Agilent. Certaines descriptions ne sont disponibles que dans le manuel d'entretien.

Test	ChemStation	Instant Pilot G4208A	Module de commande G1323B			
Autotest	Oui	Non	Non			
Capteur Pos	Oui	Non	Non			
Fente	Oui	Non	Oui			
Convertisseur N/A	Oui	Non	Non			
Chromatogramme de test	Oui (C)	Non	Oui			
Étalonnage des longueurs d'onde	Oui	Oui (M)	Oui			
Intensité de la lampe	Oui	Oui (D)	Oui			
Holmium	Oui	Oui (D)	Oui			
la cuve	Oui	Oui (D)	Non			
Courant d'obscurité	Oui	Oui (D)	Non			

 Tableau 13
 Fonctions de test disponibles selon l'interface utilisateur

- C via la commande
- M section Maintenance
- D section Diagnostic

REMARQUE

Le module de commande Agilent (G1323B) n'effectue aucun calcul. Aucun rapport avec des informations de réussite ou d'échec n'est donc généré.

Logiciel de diagnostic CPL Agilent

Le logiciel de diagnostic CPL Agilent est un outil indépendant de l'application qui propose des fonctionnalités de dépannage des modules Agilent série 1200. Il fournit à tous les CPL série 1200 la possibilité d'effectuer un premier diagnostic guidé pour les symptômes CLHP type, ainsi qu'un rapport stocké au format PDF Adobe Acrobat ou sous forme de fichier imprimable, pour aider les utilisateurs à évaluer l'état de l'instrument.

Dès l'installation, les modules suivants seront totalement pris en charge par le logiciel, y compris les tests et les étalonnages des modules, les étapes de l'injecteur et les positions de maintenance.

- Pompe binaire SL Agilent série 1200 (G1312B)
- Échantillonneur automatique hautes performances SL Agilent série 1200 (G1367B)
- Compartiment à colonne thermostaté SL Agilent série 1200 (G1316B)
- Détecteur à barrette de diodes SL Agilent série 1200 (G1315C)

Les prochaines versions du logiciel de diagnostic permettront la prise en charge de tous les modules CLHP Agilent série 1200.

Ce logiciel de diagnostic fournit des tests et des fonctionnalités de diagnostic qui peuvent être différents des descriptions du présent manuel. Pour plus de détails, reportez-vous aux fichiers d'aide fournis avec le logiciel de diagnostic.

VWD série 1200 Manuel d'utilisation

Maintenance et réparation

Maintenance et réparation - Introduction 76 Réparations simples - Maintenance 76 Remplacement des pièces internes - Réparation 76 Avertissements et précautions 77 Nettoyage du détecteur 78 Utilisation du bracelet antistatique 79

Ce chapitre fournit les informations générales concernant la maintenance et la réparation du détecteur.

Maintenance et réparation - Introduction

Réparations simples - Maintenance

Le détecteur a été conçu de manière à être facile à réparer. Les réparations les plus fréquentes, telles que le changement de lampe et de cuve à circulation, peuvent s'effectuer à l'avant du détecteur sans enlever celui-ci de la pile des modules. Ces réparations sont décrites dans « Maintenance », page 81 (*partie du manuel d'utilisation et du manuel d'entretien*).

Remplacement des pièces internes - Réparation

Pour certaines réparations, il est nécessaire de remplacer des pièces internes défectueuses. Pour cela, il faut enlever le détecteur de la pile de modules, ôter les capots et démonter le détecteur. Le levier de sécurité sur la prise d'alimentation empêche de retirer le capot du détecteur tant que l'appareil est branché. Ces réparations sont décrites dans la rubrique Repair (Réparation) du manuel d'entretien.

Avertissements et précautions

AVERTISSEMENT Blessures corporelles

Effectuer des réparations sur le détecteur peut entraîner des blessures corporelles, comme des décharges électriques, lorsque le capot du détecteur est ouvert et que l'instrument est sous tension.

- Avant d'ouvrir le couvercle du détecteur, retirez le câble d'alimentation de l'instrument.
- Remettez les capots en place avant de rebrancher le câble.

AVERTISSEMENT Arêtes métalliques tranchantes

Les pièces de l'équipement dotées d'arêtes tranchantes peuvent causer des blessures.

Pour éviter les blessures, prenez garde aux arêtes métalliques tranchantes.

AVERTISSEMENT Solvants toxiques et dangereux

La manipulation des solvants et des réactifs présente des risques pour la santé.

 Lorsque vous manipulez des solvants, observez les règles de sécurité (port de lunettes, de gants et de vêtements de protection) figurant dans la documentation fournie par le fournisseur du solvant, particulièrement s'il s'agit de produits toxiques ou dangereux.

AVERTISSEMENT Lumière du détecteur et risques pour la vue

La lumière produite par la lampe deutérium utilisée dans ce produit est dangereuse pour la vue.

Éteignez-la toujours avant de la retirer.

7 Maintenance et réparation Nettoyage du détecteur

Nettoyage du détecteur

Le boîtier du détecteur doit rester propre. Nettoyez-le avec un chiffon doux légèrement humecté d'eau ou d'une solution d'eau et de détergent doux. Évitez tout écoulement de liquide dans le détecteur.

AVERTISSEMENT Liquide dans le détecteur

La présence d'un liquide dans le détecteur peut provoquer des décharges électriques et endommager le détecteur.

• Évitez tout écoulement de liquide dans le compartiment à colonne.

Utilisation du bracelet antistatique

Les cartes électroniques sont sensibles aux décharges électrostatiques (ESD). Pour éviter tout dégât, utilisez toujours un bracelet antistatique lorsque vous manipulez des cartes et des composants électroniques.

- 1 Dépliez les deux premiers pans de la bande et enroulez fermement la face adhésive découverte autour de votre poignet.
- **2** Déroulez le reste de la bande et retirez la protection de la partie en cuivre à l'extrémité opposée.
- 3 Fixez la partie en cuivre sur une terre électrique pratique et découverte.

Figure 26 Utilisation du bracelet antistatique

7 Maintenance et réparation

Utilisation du bracelet antistatique

VWD série 1200 Manuel d'utilisation

8 Maintenance

Généralités sur la maintenance 82 Remplacement d'une lampe 83 Remplacement d'une cuve à circulation 86 Réparer la cuve à circulation 89 Utilisation de la porte-cuve 92 Élimination des fuites 95 Remplacement de pièces du système d'élimination des fuites 96 Remplacement de la carte d'interface 98 Remplacement du micrologiciel du détecteur 100 Tests et étalonnages 101 102 Test d'intensité Vérification/étalonnage des longueurs d'onde 104 Test avec le filtre d'oxyde d'holmium 106

Ce chapitre décrit la maintenance du détecteur.

Généralités sur la maintenance

Généralités sur la maintenance

Les pages qui suivent décrivent les opérations de maintenance (réparations simples) du détecteur que vous pouvez effectuer sans ouvrir le capot principal.

Procédures	Fréquence normale	Remarques
Remplacement de la lampe deutérium	Si le bruit et/ou la dérive dépasse les limites de votre application ou si la lampe ne s'allume pas.	Le remplacement doit être suivi d'un test VWD.
Remplacement de la cuve à circulation	Si l'application demande un type de cuve à circulation différent.	Le remplacement doit être suivi d'un test VWD.
Nettoyage ou remplacement des pièces de la cuve à circulation	En cas de fuites ou de chute d'intensité due à des fenêtres de la cuve à circulation contaminées.	La réparation doit être suivie d'un test de résistance à la pression.
Séchage du capteur	Si une fuite s'est produite.	Déceler les fuites.
Remplacement du système de gestion des fuites	Si cassé ou corrodé.	Déceler les fuites.

Tableau 14Réparations simples

Remplacement d'une lampe

When

Si le bruit ou la dérive dépasse les limites de l'application ou si la lampe ne s'allume pas.

Tools required

Tournevis POZI 1 PT3

Parts required

Lampe deutérium, réf. G1314-60100

Preparations required

Éteignez la lampe.

REMARQUE

Si vous souhaitez utiliser la lampe DAD Agilent 1100 plutôt que la lampe VWD, vous devez modifier les paramètres de la lampe dans VWD Configuration (Configuration du VWD) pour les passer en lampe de type 2140-0590. Ceci vous garantira que le chauffage du filament de la lampe DAD fonctionnera comme dans un détecteur à barrette de diodes. Les spécifications de l'instrument ont été établies pour un appareil équipé d'une lampe VWD.

AVERTISSEMENT Brûlure par contact avec une lampe chaude

Si le détecteur était en cours d'utilisation, la lampe est peut-être chaude.

Dans ce cas, laissez-la refroidir pendant cinq minutes

Remplacement d'une lampe

Remplacement d'une lampe

Remplacement d'une cuve à circulation

Remplacement d'une cuve à circulation

When

Si une application demande un type de cuve à circulation différent ou si celle-ci doit être réparée.

Tools required

Deux clés de 1/4" pour les raccordements capillaires

Parts required

- G1314-60086 10 mm, 14 µl, 40 bars,
- Cuve à circulation micro, 5 mm, 1 $\mu l,$ 40 bars, réf. G1314-60081
- Cuve à circulation semi-micro, 6 mm, 5 µl, 40 bars, réf. G1314-60083
- Cuve à circulation haute pression, 10 mm, 14 µl, 400 bars, réf. G1314-60082

Preparations required

Éteignez la lampe.

Remplacement d'une cuve à circulation

Remplacement d'une cuve à circulation

Étapes suivantes:

- **6** Pour déceler des fuites, établissez un débit et observez la cuve à circulation (à l'extérieur du compartiment de cuve) et toutes les connexions capillaires.
- 7 Insérez la cuve à circulation.
- 8 Pour vérifier le positionnement correct de la cuve à circulation, consultez la section « Vérification/étalonnage des longueurs d'onde », page 104
- **9** Remettez le capot avant en place.

8

Réparer la cuve à circulation

Figure 27 Cuve à circulation standard

When

Si la cuve à circulation doit être réparée en raison de fuites ou de contaminations.

Tools required

Clé de 1/4" pour les raccordements capillaires

Clé hexagonale de 4 mm

Cure-dents

Parts required

Voir « Cuve à circulation standard », page 111.

Voir « Cuve à circulation micro », page 112.

Voir « Cuve à circulation semi-micro », page 114.

Voir « Cuve à circulation haute pression », page 116.

Réparer la cuve à circulation

Preparations required

- Arrêtez le débit.
- Retirez le capot avant.
- Retirez la cuve à circulation, voir « Remplacement d'une cuve à circulation », page 86.

REMARQUE

Les pièces de la cuve illustrées sont différentes selon le type de cuve à circulation. Pour obtenir des schémas détaillés des différentes pièces, reportez-vous aux pages mentionnées plus haut.

- 1 Dévissez la vis de la cuve à l'aide d'une clé hexagonale de 4 mm.
- **2** Retirez les bagues en acier inox à l'aide de brucelles.

ATTENTION Surfaces de fenêtres rayées par des brucelles

Les surfaces des fenêtres peuvent facilement être rayées si vous employez des brucelles pour retirer les fenêtres.

- N'utilisez pas de brucelles pour retirer les fenêtres.
- 3 Utilisez du ruban adhésif pour enlever la bague PEEK, la fenêtre et le joint.
- **4** Répétez les étapes 1 à 3 pour l'autre fenêtre (veillez à ne pas mélanger les pièces).
- **5** Versez de l'isopropanol dans le trou de la cuve et séchez avec un morceau de chiffon non pelucheux.
- **6** Nettoyez les fenêtres avec de l'éthanol ou du méthanol. Séchez-les avec un chiffon non pelucheux.

REMARQUE

Utilisez toujours de nouveaux joints.

7 Maintenez la cassette de la cuve à circulation en position horizontale et installez le joint. Vérifiez que les deux trous de la cuve sont visibles au travers des trous du joint.

8

REMARQUE Les joints semi-micro N° 1 et N° 2 (éléments 6 et 7, Figure 37, page 115) sont très semblables. Ne les intervertissez pas.

- 8 Placez la fenêtre sur le joint.
- **9** Placez la bague PEEK sur la fenêtre.
- **10** Insérez les ressorts coniques. Assurez-vous que les ressorts coniques pointent vers la fenêtre. Sinon, vous risquez de casser celle-ci en serrant les vis de la cuve.
- 11 Vissez la vis dans la cuve à circulation et serrez-la.
- 12 Répétez la procédure pour l'autre côté de la cuve.
- **13** Reconnectez les capillaires, voir « Remplacement d'une cuve à circulation », page 86.
- 14 Effectuez un test de fuites. S'il est négatif, insérez la cuve à circulation.
- **15** Pour vérifier le positionnement correct de la cuve à circulation, consultez la section « Vérification/étalonnage des longueurs d'onde », page 104
- **16** Remettez le capot avant en place.

Utilisation de la porte-cuve

Vous pouvez installer ce porte-cuvette, à la place d'une cuve à circulation, dans le détecteur à longueur d'onde variable. Vous pouvez y mettre des cuvettes standard contenant des étalons, par exemple, l'étalon de solution à l'oxyde d'holmium du National Institute of Standards & Technology (NIST).

Vous pouvez l'utiliser pour les vérifications de longueurs d'onde.

When

S'il faut utiliser votre propre étalon pour vérifier l'instrument.

Tools required

Aucun

Parts required

- Porte-cuvette, réf. G1314-60200
- Cuvette avec « l'étalon », par exemple échantillon à l'oxyde d'holmium certifié NIST

Preparations required

Retirez la cuve à circulation normale.

Munissez-vous d'une cuvette avec de l'étalon.

Utilisation de la porte-cuve

Utilisation de la porte-cuve

Étapes suivantes:

- **5** Remettez à zéro le compteur de lampe, comme décrit dans la documentation de l'interface utilisateur.
- 6 Allumez la lampe.
- 7 Laissez chauffer la lampe pendant plus de 10 minutes.
- 8 Pour vérifier le positionnement correct de la lampe, consultez la section « Vérification/étalonnage des longueurs d'onde », page 104.
- 9 Installez le porte-cuve dans l'instrument.

Élimination des fuites

When

En cas de fuite sur la cuve à circulation ou sur les connexions capillaires.

Tools required

Papier

Deux clés de 1/4" pour les raccordements capillaires

Parts required

Aucun

- **1** Retirez le capot avant.
- 2 Avec du papier absorbant, séchez la zone du capteur de fuites.
- **3** Recherchez la présence de fuites dans les connexions capillaires et la zone de la cuve à circulation, et corrigez si nécessaire.
- **4** Remettez le capot avant en place.

Remplacement de pièces du système d'élimination des fuites

Remplacement de pièces du système d'élimination des fuites

When

Si les pièces sont corrodées ou cassées.

Tools required

Aucun

Parts required

Entonnoir de fuites, réf. 5061-3356

Support d'entonnoir de fuites, réf. 5041-8389

Tuyau d'évacuation de fuites (120 mm), réf.

- 1 Retirez le capot avant pour accéder au système de gestion des fuites.
- 2 Extrayez l'entonnoir de fuites de son support.
- 3 Enlevez l'entonnoir de fuites avec le tuyau hors de son emplacement.
- 4 Remplacez l'entonnoir et/ou le tuyau d'évacuation de fuites.
- 5 Insérez l'entonnoir de fuites avec le tuyau, dans sa position.
- 6 Insérez l'entonnoir de fuites dans son support.
- 7 Remettez le capot avant en place.

Remplacement de pièces du système d'élimination des fuites

Remplacement de la carte d'interface

Remplacement de la carte d'interface

When

Lorsqu'elle est défectueuse, pour l'installation de la carte ou pour toutes les réparations à l'intérieur du détecteur.

Tools required

Aucun

Parts required

Carte d'interface (BCD) réf. G1351-68701 avec contacts externes et sorties BCD.

Carte d'interface de communication réseau G1369A ou G1369-60001.

Étapes suivantes:

- **3** Si nécessaire, insérez la carte d'interface et serrez les vis.
- **4** Retirez le bracelet antistatique.
- **5** Réinstallez le module dans la pile.

Remplacement du micrologiciel du détecteur

Remplacement du micrologiciel du détecteur

L'installation d'un microprogramme plus ancien peut être nécessaire :

- pour utiliser la même version (validée) sur tous les systèmes ou
- si le logiciel de commande tiers nécessite une version spéciale.

Pour mettre à niveau le micrologiciel du détecteur, effectuez les opérations suivantes :

When

Si la nouvelle version résout les problèmes de la version installée ou qu'après remplacement de la carte-mère du détecteur (VWM), la version sur carte est antérieure à la dernière installée.

Tools required

Outil de mise à niveau de microprogramme LAN/RS-232, Instant Pilot G4208A ou module de commande G1323B

Parts required

Microprogramme, outils et documentation du site Web Agilent

Preparations required

Lisez la documentation de mise à jour fournie avec l'outil de mise à niveau de microprogramme.

1 Téléchargez le microprogramme du module, l'outil de mise à niveau LAN/RS-232 (version 2.00 ou supérieure) et la documentation à partir du site Web Agilent.

http://www.chem.agilent.com/scripts/cag_firmware.asp.

2 Téléchargez le microprogramme dans le détecteur conformément aux instructions contenues dans la documentation.

REMARQUE Le VWD-SL G1314C requiert le microprogramme version A.06.02 ou supérieure (système principal et résident).

Tests et étalonnages

Les tests suivants doivent nécessairement être réalisés après la maintenance des lampes et des cuves à circulation :

- « Test d'intensité », page 102.
- « Vérification/étalonnage des longueurs d'onde », page 104.
- « Test avec le filtre d'oxyde d'holmium », page 106.

8 Maintenance Test d'intensité

Test d'intensité

Ce test mesure l'intensité de la lampe deutérium sur toute la gamme de longueurs d'onde VWD (190 à 600 nm). Il sert à déterminer les performances de la lampe et à vérifier si les fenêtres de la cuve à circulation sont sales ou contaminées. Au démarrage du test, le gain est réglé sur zéro. Pour éliminer les effets dus aux solvants absorbants, il faut effectuer le test avec de l'eau dans la cuve à circulation. La forme du spectre d'intensité dépend essentiellement des caractéristiques de la lampe, du réseau et de la barrette de diodes. Par conséquent, les spectres d'intensité différeront légèrement entre les instruments. La Figure 32, page 103 montre un spectre de test d'intensité type.

Évaluation du test d'intensité (ChemStation Agilent seulement)

La ChemStation Agilent évalue trois valeurs automatiquement et affiche les limites de chacune, la moyenne, le minimum et le maximum de tous les points de données, et l'état *Passed (Réussite)* ou *Failed (Échec)* pour chaque valeur.

Échec du test

Causes probables

- Solvant absorbant dans la cuve à circulation.
 - Cuve à circulation sale ou contaminée.
 - Éléments optiques (lentille de source, miroirs, réseau) sales ou contaminés.
 - Lampe ancienne ou non Agilent.

Actions suggérées

- ✓ Vérifiez que la cuve à circulation est pleine d'eau.
- ✓ Répétez le test avec la cuve à circulation retirée. Si le test est concluant, remplacez les fenêtres de la cuve à circulation.
- ✓ Nettoyez/remplacez les éléments optiques.
- ✓ Remplacez la lampe.

```
Instrument: G1314B
Serial Number: JP33324886
Operator: Wolfgang
Date: 03.01.2006
Time: 15:07:09
File: C:\CHEM32\2\DIAGNOSE\VWD_INT.DGR
```

```
VWD Intensity Spectrum
```


VWD Intensity Test Results		
	Specification	Measured Result
Accumulated lamp on time		94.35 h
Highest intensity	> 10000 cts	222615 cts Passed
Average intensity	> 5000 cts	29734 cts Passed
Lowest intensity	> 200 cts	1137 cts Passed

8

Vérification/étalonnage des longueurs d'onde

L'étalonnage des longueurs d'onde du détecteur s'effectue en utilisant la position d'ordre zéro et la position de ligne d'émission 656 nm de la lampe deutérium. La procédure d'étalonnage comprend deux étapes. D'abord, le réseau est étalonné sur la position d'ordre zéro. La position de pas du moteur pas à pas, où le maximum d'ordre zéro est détecté, est stockée dans le détecteur. Ensuite, le réseau est étalonné par rapport à la ligne d'émission du deutérium à 656 nm, et la position du moteur à laquelle le maximum se produit est stockée dans le détecteur.

Outre l'étalonnage d'ordre zéro et 656 nm (ligne d'émission alpha), la ligne d'émission bêta à 486 nm et les trois lignes d'holmium sont utilisées pour l'intégralité du processus d'étalonnage de longueur d'onde. Ces lignes d'holmium sont à 360,8 nm, 418,5 nm et 536,4 nm.

VWD Wavelength Calibration : System-2				×			
Deviation Property	Devi Zero-order 8.8nm 0.0nm	Calibratio ation Ref. lines 0.8nm 0.1nm	n history Time 21:55:49 11:40:47	Date 07.02.1970 04.01.2006			
-12nm Zero-order +12nm Max. Deviation [[[[[[[[]]]]]]]] -12nm Reference lines +12nm							
Zero-order deviation is 0.0nm Max. deviation (reference lines) 0.0nm Adjust	ОК	Cancel	<u>H</u> elp				
Calibration settings equal to measured one, no calibration necessary							

Figure 33 Vérification/étalonnage des longueurs d'onde

REMARQUE

La vérification/l'étalonnage des longueurs d'onde prend environ 2,5 minutes et est désactivé dans les 10 premières minutes après l'allumage de la lampe, la dérive initiale risquant de déformer la mesure.

Vérification/étalonnage des longueurs d'onde

Quand la lampe est allumée, la position de la ligne d'émission 656 nm de la lampe deutérium est vérifiée automatiquement.

Test avec le filtre d'oxyde d'holmium

Test avec le filtre d'oxyde d'holmium

Ce test vérifie l'étalonnage du détecteur par rapport aux trois maxima de longueurs d'onde du filtre d'oxyde d'holmium. Le test affiche la différence entre le maximum attendu et mesuré. La Figure 34, page 107 montre un spectre de test d'holmium.

Le test utilise le maximum d'holmium suivant :

- 360,8 nm
- 418.5 nm
- 536,4 nm

REMARQUE Voir aussi « Déclaration de conformité du filtre à l'oxyde d'holmium (HOX2) », page 131.

Quand effectuer le test

- après réétalonnage,
- dans le cadre de la procédure de qualification opérationnelle/vérification des performances, ou
- après l'entretien ou la réparation de la cuve à circulation.

Interprétation des résultats

Le test est concluant quand les trois longueurs d'onde se situent à l'intérieur de ± 1 nm de la valeur prévue. Le détecteur est alors correctement étalonné.

REMARQUE

Les résultats du test ne sont actuellement disponibles que sur la ChemStation Agilent.

Les versions de la ChemStation antérieures à B.01.xx présentent une limite de \pm 2 nm. Elle doit être de \pm 1 nm. Si le test présente une valeur supérieure à \pm 1 nm, effectuez un réétalonnage.

Test avec le filtre d'oxyde d'holmium

Instrument:	G1314B
Serial Number:	JP33324886
Operator:	Wolfgang
Date:	03.01.2006
Time:	15:26:41
File:	C:\CHEM32\2\DIAGNOSE\VWD_HOLM.DGF

VWD Holmium Spectrum

VWD Holmi	um Te:	st Results								
						Specificat:	ion	Measu	ced	Result
Deviation	from	wavelength	1:	360.8	nm	-11	nm	0.0	nm	Passed
Deviation	from	wavelength	2:	418.5	nm	-11	nm	0.1	nm	Passed
Deviation	from	wavelength	3:	536.4	nm	-11	nm	0.0	nm	Passed

Holmium Oxide Test Failed (Échec du test avec le filtre d'oxyde d'holmium)

Causes probables

• Détecteur non étalonné.

- Cuve à circulation sale ou défectueuse.
- Filtre d'oxyde d'holmium sale ou défectueux.
- Désalignement optique.

Actions 🖌 Réétalonnez le détecteur.

suggérées

Test avec le filtre d'oxyde d'holmium

- ✔ Répétez le test avec la cuve à circulation retirée. Si le test est concluant, remplacez les éléments de la cuve à circulation.
- ✓ Effectuez le test avec le filtre d'oxyde d'holmium. Si le test échoue, remplacez l'ensemble filtre.
- ✔ Réalignez les éléments optiques.

VWD série 1200 Manuel d'utilisation

Pièces et matériels pour maintenance

Généralités sur les pièces pour maintenance 110 Cuve à circulation standard 111 Cuve à circulation micro 112 Cuve à circulation semi-micro 114 Cuve à circulation haute pression 116 Porte-cuve 117 Pièces de récupération des fuites 118 Kit d'accessoires 119

Ce chapitre fournit les informations concernant les pièces pour maintenance.

Généralités sur les pièces pour maintenance

Généralités sur les pièces pour maintenance

Pièce	Description	Référence
	Ensemble câble CAN 0,5 m	5181-1516
	Ensemble câble CAN 1 m	5181-1519
	Carte d'interface DCB/Contacts externes	G1351-68701
	Carte d'interface de communication réseau	G1369A ou G1369-60001
	Module de commande G1323B (remarque : Le VWD-SL G1314C peut être piloté par un module de commande G1323B simplement en mode standard, comme le G1314B (pas de	G1323-67001
	débit de données plus élevé disponible) ou l'Instant Pilot G4208A.	G4208-67001
	Lampe au deutérium	G1314-60100
	Cuve à circulation standard, 10 mm 14 μ l, pour pièces supplémentaires, voir « Cuve à circulation standard », page 111	G1314-60086
	Cuve à circulation micro, 5 mm 1 μ l, pour pièces supplémentaires, voir « Cuve à circulation micro », page 112	G1314-60081
	Cuve à circulation haute pression, 10 mm 14 µl, pour pièces supplémentaires, voir « Cuve à circulation haute pression », page 116	G1314-60082
	Cuve à circulation semi-micro, 6 mm 5 µl, pour pièces supplémentaires, voir « Cuve à circulation semi-micro », page 114	G1314-60083
	Porte-cuve	G1314-60200
	Capot avant	5065-9982
	Pièces de traitement des fuites	voir « Pièces de récupération des fuites », page 118

Tableau 15 Pièces pour maintenance

Cuve à circulation standard

Pièce	Description	Référence
	Cuve à circulation standard, 10 mm, 14 µl, 40 bars	G1314-60086
1	Kit de vis de cuve, quantité = 2	G1314-65062
2	Kit ressort conique, quantité = 10	79853-29100
3	Kit de bagues N° 1 PEEK, quantité = 2	G1314-65065
4	Joint N° 1 (petit trou), KAPTON, quantité = 10	G1314-65063
5	Kit fenêtre à quartz, quantité = 2	79853-68742
6	Joint N° 2 (grand trou), KAPTON, quantité = 10	G1314-65064
7	Kit de bagues N° 2 PEEK, quantité = 2	G1314-65066

Tableau 16 Ensemble cuve à circulation standard

1 - Vis de cuve

2 - Ressorts coniques

3 - Bague PEEK N°1

4 - Joint N°1 (petit trou)

5 - Fenêtre à quartz

6 - Joint N°2 (grand trou)

7 - Bague PEEK N°2

Cuve à circulation micro

Pièce	Description	Référence
	Cuve à circulation micro, 5 mm, 1 µl, 40 bars	G1314-60081
	Capillaire colonne–détecteur en acier inoxydable 400 mm, d.i. 0,12	5021-1823
1	Vis de cuve	79853-27200
	Kit cuve micro, comprend : deux fenêtres, deux joints N° 1 et deux joints N° 2	G1314-65052
2	Kit ressort conique, quantité = 10	79853-29100
3	Kit bague acier inox, quantité = 2	79853-22500
4	Kit fenêtre à quartz, quantité = 2	79853-68742
5	Joint N° 1, PTFE, quantité = 10	79853-68743
6	Joint N° 2, PTFE, quantité = 10	G1314-65053

Tableau 17	Ensemble cuve	à cire	culation	micro
------------	---------------	--------	----------	-------

Figure 36 Cuve à circulation micro

Cuve à circulation semi-micro

Pièce	Description	Référence
	Ensemble cuve à circulation semi-micro, 6 mm, 5 $\mu l,$ 40 bars	G1314-60083
1	Vis de cuve	79853-27200
	Kit cuve à circulation semi-micro, composé de : deux fenêtres, deux joints standard N° 1, un joint semi-micro N° 1 et un joint semi-micro N° 2 .	G1314-65056
2	Ressorts coniques (paquet de 10)	79853-29100
3	Bague acier inox, (pqt de 2)	79853-22500
4	Joint semi-micro N° 1 PTFE, (pqt de 10)	79853-68743
5	Fenêtre à quartz, (pqt de 2)	79853-68742
6	Joint semi-micro N° 1, PTFE, (pqt de 10)	G1314-65057
7	Joint semi-micro N° 2, PTFE, (pqt de 10)	G1314-65058
	Capillaire d'entrée, 400 mm, d.i. 0,12 mm	5021-1823

Tableau 18 Ensemble cuve à circulation semi-micro

REMARQUE

Les joints semi-micro N° 1 et N° 2 (éléments 6 et 7) sont très semblables. Ne les intervertissez pas.

Figure 37 Cuve à circulation semi-micro

Cuve à circulation haute pression

Pièce	Description	Référence
	Cuve à circulation haute pression, 10 mm, 14 µl, 400 bars	G1314-60082
	Capillaire colonne–détecteur acier inox, 380 mm, d.i. 0,17 (un côté non assemblé)	G1315-87311
1	Vis de cuve	79853-27200
	Kit de cellule, comprend : deux fenêtres, deux joints KAPTON et deux bagues PEEK	G1314-65054
2	Kit de bagues PEEK, quantité = 2	79853-68739
3	Kit fenêtre à quartz, quantité = 2	79853-68734
4	Kit de joints, KAPTON, quantité = 10	G1314-65055

Tableau 19	Ensemble cuve à	circulation à	haute pression
------------	-----------------	---------------	----------------

2 - Bague PEEK

- 3 Fenêtre à quartz
- 4 Joint KAPTON

5 - Capot de cuve

5 - Capor de cuve

Figure 38 Cuve à circulation haute pression

Porte-cuve

Tableau 20 Porte-cuve

Pièce	Description	Référence
	Porte-cuve	G1314-60200

Pour obtenir des informations complémentaires sur le porte-cuve, voir « Utilisation de la porte-cuve », page 92.

Figure 39 Porte-cuve

Pièces de récupération des fuites

Pièce	Description	Référence
3	Entonnoir de fuites	5041-8388
4	Support de l'entonnoir de fuites	5041-8389
5	Clip	5041-8387
6	Tuyau souple, 120 mm, 5 m pour réapprovisionnement	5062-2463
7	Tuyau souple, 1 200 mm, 5 m pour réapprovisionnement	5062-2463

Tableau 21Pièces de récupération des fuites

Figure 40 Pièces de récupération des fuites

Kit d'accessoires

Ce kit contient quelques accessoires et outils qui vous seront nécessaires lors de l'installation et de la réparation du détecteur.

Description	Référence
Kit d'accessoires	G1314-68705
Tuyau souple (vers évacuation), 5 m pour réapprovisionnement	5062-2463
Kit capillaire de sortie PEEK, d.i. 0,25 mm (PEEK)	5062-8535
Raccord mâle PEEK, quantité = 1	0100-1516
Clé mâle 6 pans 1,5 mm	8710-2393
Clé mâle 6 pans 4 mm	8710-2392
Clé plate de 1/4-5/16"	8710-0510
Clé plate de 4 mm	8710-1534

 Tableau 22
 Pièces du kit d'accessoires

9 Pièces et matériels pour maintenance

Kit d'accessoires

VWD série 1200 Manuel d'utilisation

10 Annexe

Informations générales de sécurité 122 Informations sur les piles au lithium 125 Perturbations radioélectriques 126 Niveau sonore 127 Rayonnement UV 128 Informations sur les solvants 129 Déclaration de conformité du filtre à l'oxyde d'holmium (HOX2) 131 Agilent Technologies sur Internet 132

Ce chapitre apporte des informations supplémentaires sur la sécurité, la réglementation et notre site Web.

Informations générales de sécurité

Informations générales de sécurité

Les consignes générales de sécurité suivantes s'imposent pendant toutes les phases d'utilisation, d'entretien et de réparation de cet instrument. Le non-respect de ces précautions ou d'autres avertissements spécifiques indiqués dans ce manuel transgresse les normes de sécurité en matière de conception, fabrication et utilisation prévue de l'instrument. AgilentTechnologies ne pourra être tenu pour responsable en cas de non-respect de ces exigences par le client.

Généralités

Cet instrument appartient à la classe de sécurité I (comporte une borne de mise à la terre) et a été fabriqué et testé conformément aux normes de sécurité internationales.

Cet instrument est conçu et certifié comme instrument de laboratoire d'usage général destiné aux applications de recherche et d'analyse de routine seulement. Ils ne sont pas certifiés pour les applications médicales ou in-vitro.

Opération

Avant la mise sous tension, conformez-vous à la section d'installation. Vous devez en outre observer les points suivants.

Ne retirez pas les capots de l'instrument pendant son fonctionnement. Avant de mettre l'instrument sous tension, les bornes de mise à la terre, les rallonges, les auto-transformateurs et les appareils qui y sont connectés doivent tous être reliés à une terre de protection par l'intermédiaire d'une prise de terre. Toute interruption de la mise à la terre constitue un risque d'électrocution, pouvant entraîner des blessures graves. S'il s'avère que cette protection n'est plus assurée, l'instrument doit être rendu inopérant et son utilisation doit être interdite. Utilisez uniquement des fusibles de calibre et de type appropriés (fusible normal, temporisé, etc.) comme fusibles de rechange. N'utilisez pas de fusibles réparés et ne court-circuitez pas les porte-fusibles.

ATTENTION Vérifiez la bonne u

Vérifiez la bonne utilisation des équipements.

Il se peut que les équipements ne soient plus protégés.

• L'opérateur de cet instrument doit respecter les spécifications d'utilisation figurant dans le manuel.

Certains réglages décrits dans ce manuel s'effectuent avec l'instrument sous tension et avec les capots de protection retirés. L'énergie présente en de nombreux points risque, en cas de contact, de causer des blessures corporelles.

Il convient d'éviter, dans la mesure du possible, d'effectuer des opérations de réglage, d'entretien et de réparation sur un instrument ouvert sous tension. Si c'est inévitable, ces opérations doivent être effectuées par une personne qualifiée et consciente du danger. Ne pas tenter d'effectuer une opération d'entretien ou un réglage sans la présence d'une autre personne capable de donner les premiers secours et d'assurer une réanimation. Ne pas remplacer les composants quand le câble d'alimentation est connecté.

N'utilisez pas l'instrument en présence de gaz ou de fumées inflammables. L'utilisation de tout appareil électrique dans un tel environnement présente un danger certain.

N'installez aucune pièce de substitution et n'apportez aucune modification non autorisée à l'instrument.

Les condensateurs à l'intérieur de l'instrument peuvent rester chargés même une fois l'instrument déconnecté de sa source d'alimentation. Des tensions dangereuses sont présentes dans cet instrument et peuvent causer des blessures graves. Soyez extrêmement prudent lors de la manipulation, du test et du réglage de cet appareil.

Lorsque vous manipulez des solvants, respectez les règles de sécurité (port de lunettes, de gants et de vêtements de protection) décrites dans la fiche de données de sécurité fournie par le fournisseur du solvant, surtout si les solvants utilisés sont toxiques ou dangereux. Informations générales de sécurité

Symboles de sécurité

Le Tableau 23, page 124 indique les symboles de sécurité utilisés sur l'instrument et dans la documentation.

Symbole	Description
\wedge	Ce symbole indique que l'utilisateur doit se reporter au manuel d'utilisation pour protéger l'appareil contre les détériorations.
4	Indique la présence de tensions dangereuses.
Ð	Indique une borne de mise à la terre protégée.
2	Indique que la lumière produite par la lampe deutérium utilisée dans ce produit est dangereuse pour la vue.

Tableau 23 Symboles de sécurité

AVERTISSEMENT Un AVERTISSEMENT

vous met en garde contre des situations qui pourraient causer des blessures corporelles ou la mort.

 Ne poursuivez pas tant que vous n'avez pas parfaitement compris et rempli les conditions indiquées.

ATTENTION

Le message ATTENTION

vous met en garde contre des situations qui pourraient causer la perte de données et endommager l'appareil.

• Ne poursuivez pas tant que vous n'avez pas parfaitement compris et rempli les conditions indiquées.

Informations sur les piles au lithium

AVERTISSEMENT Le remplacement incorrecte de la pile constitue un danger d'explosion.

Les piles au lithium ne doivent pas être éliminées avec les ordures ménagères. Le transport de piles au lithium déchargées par des transporteurs soumis aux règles des organismes IATA/ICAO, ADR, RID, IMDG est interdit. Les piles au lithium déchargées doivent être éliminées localement, conformément à la réglementation nationale relative à l'élimination des déchets.

 Remplacez la pile uniquement par une pile du même type ou d'un type équivalent recommandé par le fabricant de l'équipement.

Perturbations radioélectriques

Perturbations radioélectriques

Pour un bon fonctionnement et le respect des normes de sécurité ou de compatibilité électromagnétique, utilisez uniquement les câbles fournis par Agilent Technologies.

Test et mesure

Si l'équipement de test et de mesure est utilisé avec des câbles non blindés et/ou utilisé pour des mesures dans des montages ouverts, l'utilisateur doit s'assurer que, dans les conditions d'utilisation, les limites d'interférence radio sont toujours respectées à l'intérieur des locaux.

Niveau sonore

Déclaration du fabricant

Cette déclaration est conforme aux exigences de la directive allemande du 18 janvier 1991 relative au niveau sonore (German Sound Emission Directive).

Le niveau de pression acoustique de ce produit (au niveau de l'opérateur) est inférieur à 70 dB.

- Niveau de pression acoustique < 70 dB (A)
- À la place de l'opérateur
- Fonctionnement normal
- D'après ISO 7779 : 1988/EN 27779/1991 (Test type)

10 Annexe

Rayonnement UV

Rayonnement UV

Les émissions de radiation d'ultraviolets (200-315 nm) émanant de ce produit sont limitées de telle sorte que l'incidence d'exposition au radiant sur la peau ou l'œil non protégés de l'opérateur ou du personnel de service, sont contenues dans les limites de seuil (TLV, Threshold Limit Values) suivantes, d'après l'Association américaine des hygiénistes industriels (American Conference of Governmental Industrial Hygienists) :

Tableau 24 Limites de radiation UV

Exposition/jour	Irradiation effective
8 heures	0,1 μW/cm ²
10 minutes	5 μW/cm²

En principe, les valeurs de radiation sont très inférieures à ces limites :

 Tableau 25
 Valeurs types de radiation UV

Position	Irradiation effective	
Lampe installée, à 50 cm	moyenne 0,016 μW/cm ²	
Lampe installée, à 50 cm	maximum 0,14 µW/cm ²	

Informations sur les solvants

Observez les recommandations suivantes sur l'utilisation des solvants.

Cuve à circulation

Évitez d'utiliser des solutions alcalines (pH > 9,5) susceptibles d'attaquer le quartz et de nuire aux propriétés optiques de la cuve à circulation.

Empêchez la cristallisation des solutions tampons. Cela causerait l'obstruction/la dégradation de la cuve à circulation.

Si la cuve à circulation est transportée sous des températures inférieures à 5 degrés C, vérifiez que cette cuve est remplie d'alcool.

Les solvants aqueux dans la cuve à circulation peuvent favoriser le développement d'algues. Ne laissez donc jamais stagner des solvants aqueux dans la cuve. Ajoutez une petite quantité de solvant organique (par exemple environ 5 % d'acétonitrile ou de méthanol).

Solvants

L'utilisation de récipients en verre ambré peut empêcher la prolifération d'algues.

Filtrez toujours les solvants car de petites particules peuvent bloquer les capillaires de façon permanente. Évitez les solvants suivants, corrosifs pour l'acier :

- les solutions d'halogénures alcalins et leurs acides respectifs (par exemple, iodure de lithium, chlorure de potassium, etc.) ;
- les concentrations élevées d'acides inorganiques, tels que l'acide nitrique ou l'acide sulfurique, surtout à des températures élevées (si votre méthode chromatographique le permet, remplacez-les par de l'acide phosphorique ou un tampon de phosphate, moins corrosifs pour l'acier inoxydable);
- les solvants ou mélanges halogénés qui forment des radicaux et/ou des acides, par exemple :

2CHCl₃ + O₂ Æ 2COCl₂ + 2HCl

Cette réaction, dans laquelle l'acier inoxydable agit probablement comme un catalyseur, se produit rapidement avec du chloroforme séché si le processus de séchage élimine l'alcool de stabilisation ;

10 Annexe

Informations sur les solvants

- les éthers de qualité chromatographique, qui peuvent contenir des peroxydes (le THF, le dioxane, le di-isopropyléther, par exemple). De tels éthers doivent être filtrés avec de l'oxyde d'aluminium sec qui absorbe les peroxydes ;
- les solutions d'acides organiques (acide acétique, acide formique, etc.) dans des solvants organiques. Par exemple, une solution de 1 % d'acide acétique dans du méthanol attaquera l'acier.
- les solutions contenant des agents complexants forts (l'EDTA, l'acide d'éthylène diamine tétra-acétique, par exemple) ;
- les mélanges de tétrachlorure de carbone avec du propanol-2 ou du THF.

Déclaration de conformité du filtre à l'oxyde d'holmium (HOX2)

Declaration of Conformity We herewith inform you that the							
							Holmium Oxide Glass Filter (Type Hoya HY-1) (Part No. 79880-22711)
meets the following specification of absorbance maxima positions:							
Mashar	1000	Wandmath *	Acorra	ngur N	Banduidth		
70997.0	1000	361.0 mm	+6.1 m	- <u>y</u>	2 mm		
79005R	1090	410.0 mm		1	2 1000		
79034A C1206.0	1050	453.7 mm					
G1300A	1050	- 526 7 mm					
GISIDA	1100	- ^{330.7} mm					
G1315B/C	1100 / 1200	_					
G1600							
79853C	1050	360.8mm	+/- 2 m	2	6 mm		
		418.5mm					
		536.4mm					
G1314A/B/C	1100 / 1200	360.8mm	+/- 1 m	1	6 mm		
		418.5mm					
		536.4mm					
Agilent Technologies guarantees the traceability of the specified absorb ance maxima to a National Institute of Standards & Technology (NIST) Holmium Oxide Solution Standard with a lot-to-lot tolerance of \pm 0.3 nm. The wavelength calibration filter built into the Agilent Technologies UV-VIS detectors is made of this naterial and meets these specifications. It is, therefore, suitable for wavelength calibration of these detectors within the specified wavelength accuracy of the respective detector over its wavelength range. January 13, 2006							
Thomas for (Date) 6. 6the							
(Enginee	ring Manager)			(Quality Ma	nager)		
P/N 89550-9050		Revision: 1 Effective by: Jan	E 13, 2006	Agile	nt Technologies		

10 Annexe

Agilent Technologies sur Internet

Agilent Technologies sur Internet

Pour les toutes dernières informations sur les produits et les services Agilent Technologies, visitez notre site Internet à l'adresse suivante :

http://www.agilent.com

Sélectionnez Products (Produits)/Chemical Analysis (Analyse chimique).

Vous y trouverez également la toute dernière version du microprogramme des modules Agilent série 1200, que vous pouvez télécharger.

Sommaire

A

absorbance Beer-Lambert 65 Agilent sur Internet 132 alimentation électrique observations 20 alimentation câbles 21 analogique gamme de sortie 58 paramètres de sortie 58 54 analyse de l'échantillon ASTM 22 conditions ambiantes référence et conditions 25 avertissements et précautions 77, 77

B

balayage 57 bande passante 6,5 nm 24 Beer-Lambert (loi) 65 bruit, à court terme 24

C

câble branchement du câble analogique 34 branchement du câble CAN 34 branchement du câble LAN 34 connexion de la commande à distance CAG 34 raccordement électrique 34 CAN

branchement de l'interface 34 caractéristiques physiques

consommation 23 humidité 23 informations de sécurité 23 poids et dimensions 23 température de fonctionnement 23 tension et fréquence secteur 23 caractéristiques 8 maintenance et sécurité 25 physiques 23 structure de l'instrument 16 cartes cartes photodiode (CAN) 13 chromatogramme 43 condition "stop-flow" 56 conditions de référence 25 conditions requises sur site alimentation électrique 20 câbles d'alimentation 21 encombrement de paillasse 22 environnement 22 configuration de la pile de modules 30 configuration du détecteur 48 40 configuration d'une analyse configuration 30 pile cuve à circulation facteurs de correction 66 haute pression (pièces) 116

micro (pièces) 112 porte-cuve (pièces) 117 semi-micro (pièces) 114 standard (pièces) 111 types et données 24

D

déballage 28 déclaration de conformité 131 dépannage fonctions de test 70 généralités 70 interfaces utilisateur 73 messages d'erreur 70 70 signaux de diagnostic voyants d'état 71. 70 dérive 47. 24 initiale 52 diagnostic signaux 70 dimensions 23 diviseur de faisceau 13

É

électricité consommation 23

E

encombrement de la paillasse 22 ensemble fente d'entrée 12 ensemble lentille de source 12 environnement 22

F

facteurs de correction pour cuves à circulation 66 filtre de coupure 12 fonctionnement, température 23 fonctions de test 70 fonctions BPL 25 fuite élimination 95 panneaux de récupération 118 (pièces)

Sommaire

G

généralités généralités sur le système 9 système optique 9 trajet optique 9

informations sur l'échantillon 52 informations sur les algues 129 informations sur les solvants 129 informations batteries 125 niveau sonore 127 perturbations radioélectriques 126 piles au lithium 125 porte-cuve 92 rayonnement UV 128 solvants 129 installation du module 33 raccordements des fluides 36 Instant Pilot 73 interfaces utilisateur ChemStation, module de commande, Instant Pilot 73 Internet 132 introduction 8

J

justesse photométrique 66

Κ

kit d'accessoires (pièces) 119

L

lampe dérive initiale 52 test d'intensité 102 type 24

```
largeur de pic
    paramètres
                  59
ligne de base stable
                      47
linéarité
                  24
           25
liste de contrôle de livraison
                              28
longueur d'onde
    étalonnage
                  104
    gamme de 190 à 600 nm
                               24
    précision
                24
    réétalonnage
                    70
```

Μ

maintenance préventive (EMF) 17 maintenance cuve à circulation standard 89 élimination des fuites 95 82 aénéralités 75 introduction nettoyage de l'instrument 78 pour les pièces, voir pièces pour maintenance 109 remplacement de la carte d'interface 98 remplacement de la cuve à circulation 86 remplacement du microprogramme 100 remplacement du système d'élimination des fuites 96 remplacement d'une lampe 83 réparations simples 76 utilisation du porte-cuve 92 messages d'erreur 70 méthode chargement 47 microprogramme mises à jour 100 miroirs ensemble 13 module de commande G1323B 73. 8

Ν

Niveau sonore 127 normes 23

0

optimisation du système 44 performances du détecteur 64 oxyde d'holmium déclaration de conformité 131 filtre 12

Ρ

paramètres spéciaux 55 paramètres 48 détecteur largeur de pic 59 paramètres de sortie analogique 58 performances optimisation 64 24 spécifications Perturbations radioélectriques 126 photodiode cartes 13 photodiodes ensembles 13 pièces pour maintenance cuve à circulation haute pression 116 cuve à circulation micro 112 cuve à circulation semi-micro 114 cuve à circulation standard 111 généralités sur les pièces pour maintenance 110 kit d'accessoires 119 panneaux de récupération des fuites 118 porte-cuve 117 pièces matériels pour maintenance 109

Sommaire

piles informations relatives à la sécurité 125 poids 23 points de consigne spécifiques 59 porte-cuve 92 préparation du système CLHP 44 présentation système optique 9

R

raccordements électriques descriptions 14 radiation UV 128 réchauffage 47 réétalonnage en longueur d'onde 70 remplacement carte d'interface 98 microprogramme 100 réparations généralités sur les réparations simples 82 introduction 75 maintenance simple 76 nettoyage de l'instrument 78 pièces internes 76 réparations simples, voir maintenance 81 réseau ensemble 13

S

secteur consommation électrique 23 tension et fréquence 23 sécurité informations générales 122, 122 instrument de classe I 122 symboles 124 signal tracé 51 signaux 70 diagnostic spécifications performances 24 spectres en temps réel 56 spectres en temps réel 56 structure de l'instrument 16

T

tests étalonnage des longueurs d'onde 104 intensité de la lampe 102 oxyde d'holmium, test avec le filtre d'oxyde d'holmium 106 tracé en ligne 51 type de détection 24

U

unité optique cartes photodiode 13 cuve à circulation 10 ensemble diviseur de faisceau 13 ensemble fente d'entrée 12 ensemble filtre 12 ensemble lentille de source 12 ensemble réseau 13 ensembles photodiodes 13 filtre 12 12 lampe miroirs 13 utilisation allumage 45 amorçage et purge du système 40 analyse de l'échantillon 54 balayage 57 47 chargement de la méthode chromatogramme type 43

condition "stop-flow" 56 configuration du détecteur 48 configuration d'une analyse 40 47 dérive détecteur 39 EMF 17 exigences et conditions 42 informations sur l'échantillon 52 ligne de base stable 47 paramètres de largeur de pic 59 58 paramètres de sortie analogique paramètres du détecteur 48 paramètres spéciaux 55 59 points de consignes spécifiques porte-cuve 92 préparation du système CLHP 44 réchauffage 47 spectres en temps réel 56 tracé des signaux 51 tracé en ligne 51

V

voyant 12 voyants d'état 70 www.agilent.com

Contenu de ce manuel

Ce manuel contient des informations techniques sur le détecteur à longueur d'onde variable de la série Agilent 1200.

Il aborde les points suivants :

- présentation et spécifications,
- installation,
- utilisation et optimisation,
- généralités sur le dépannage,
- maintenance,
- identification des pièces,
- informations relatives à la sécurité.

© Agilent Technologies 2006

Imprimé en Allemagne 02/06

G1314-93010

