EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water with Direct Aqueous Injection LC/MS/MS

> E. Michael Thurman and Imma Ferrer Center for Environmental Mass Spectrometry University of Colorado Boulder, CO, USA

> > Agilent Technologies

The Measure of Confidence

EPA Method 538 is a new method from EPA for organophosphate pesticides in drinking water.

It uses direct aqueous injection; thus, no sample preparation is needed.

We use both UHPLC (Agilent 1290) and MS/MS (Agilent 6460) analysis for rapid analysis and sensitive detection with ng/L limits of detection.

A second MRM is added for more reliable identification.

Direct injection of organophosphate pesticides (EPA Method 538) will work by UHPLC (Agilent Model 1290) and LC/MS/MS with Jetstream (Agilent Model 6460) with trace level detection at ng/L concentrations.

1. Introduction-Summary

1.1 EPA Method 538 (published in November 2009 by Shoemaker) deals with Organophosphate pesticides in drinking water (1) and one other contaminant, quinoline.

1.2 The method consists of 10 compounds: acephate, aldicarb, aldicarb sulfoxide, dicrotophos, diisopropylmethylphosphonate (DIMP), fenamiphos sulfone, fenamiphos sulfoxide, methamidophos, oxydemeton methyl, quinoline, and thiofanox with 5 labeled internal standards.

1.3 Direct aqueous injection is used with a large volume sample of 100 microliters; thus, no sample preparation is needed.

1.4 Because solid phase extraction (i.e. concentration of the sample is not carried out) suppression is mimimized in the analysis.

1.5 Part-per-Trillion Detection Limits.

Introduction 1.1:

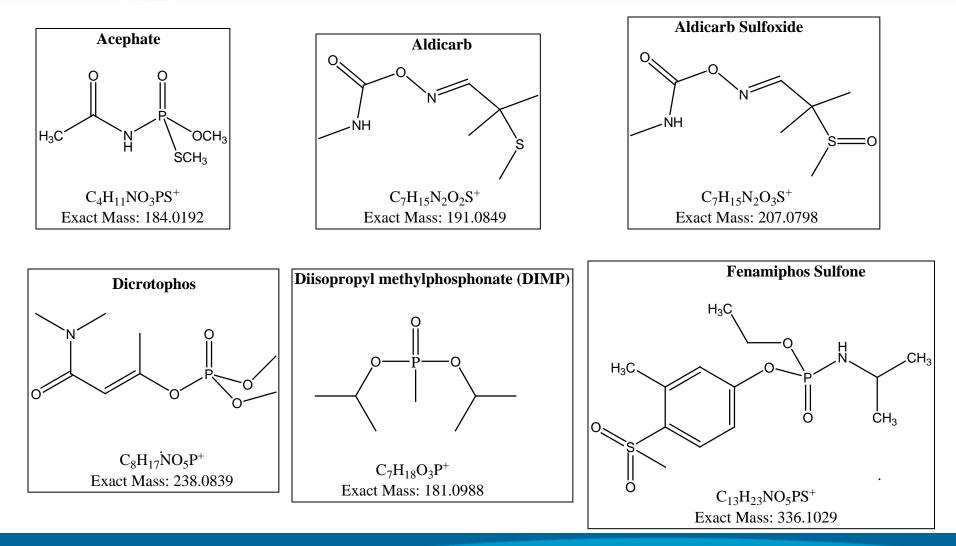
EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water by Direct Aqueous Injection

by

Jody Shoemaker, EPA Cincinnati, OH

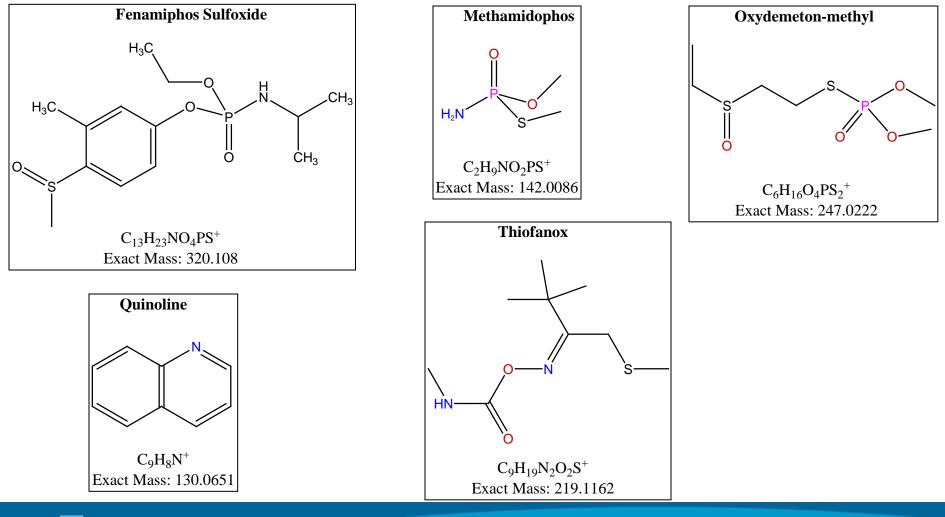
Shoemaker.jody@EPA.GOV

513-569-7298



Introduction: 1.2. Ten Organophosphates and Quinoline

<u>Analyte</u>	Chemical Abstract Services <u>Registry Number (CASRN)</u>
Acephate	30560-19-1
Aldicarb	116-06-3
Aldicarb sulfoxide	1646-87-3
Dicrotophos	141-66-2
Diisopropyl methylphosphonate (DIMP)	1445-75-6
Fenamiphos sulfone	31972-44-8
Fenamiphos sulfoxide	31972-43-7
Methamidophos	10265-92-6
Oxydemeton-methyl	301-12-2
Quinoline	91-22-5
Thiofanox	39196-18-4

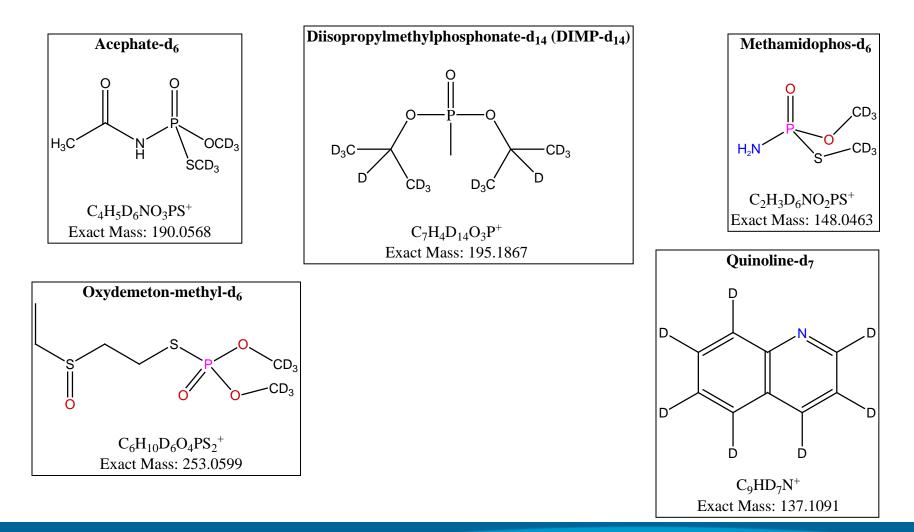


Introduction:1.3. Organophosphate Structures

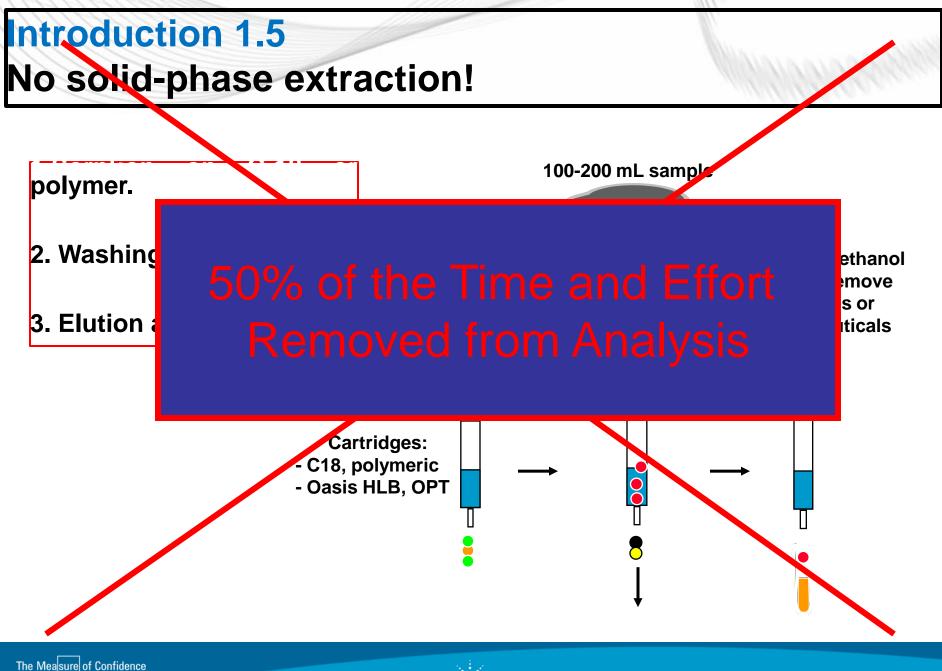
Introduction 1.3. Organophosphate Structures

The Measure of Confidence

Agilent Technologies


Confidentiality Label March 20, 2012

Introduction 1.4. Five Deuterated Standards


Internal S	tandards
Methamid	ophos-d ₆
Acephate-	1 ₆
Oxydemet	on-methyl-d₀
Quinoline	d ₇
Diisoprop	l methylphosphonate-d ₁₄ (DIMP-d ₁₄)

Introduction 1.4. Deuterated Internal Standards

Introduction 1.6 Minimizing Compound Suppression

•SPE increases background organic matrix by 200 to 500 fold

OH •Salts, such as sodium and metal ions, are also concentrated along with the background organic matrix •These salts suppress the ionization of target analytes. (,,,,,,,OH HO OH OH NaOO NaOOC The Measure of Confidence

Introduction 1.6 Direct Aqueous Injection with the 1290 Infinity—UHPLC and 6460

2.0 Experimental Methods: Summary

- 1. Collect 40 mL sample and preserve with sodium omadine and ammonium acetate.
- 2. Aliquot 950 μL of sample and add 50 μL of internal standard.
- 3. Analyze by UHPLC/MS/MS with the Agilent 1290 LC and the Agilent Model 6460

Experimental Methods 2.1 MRM Transitions for QqQ Method

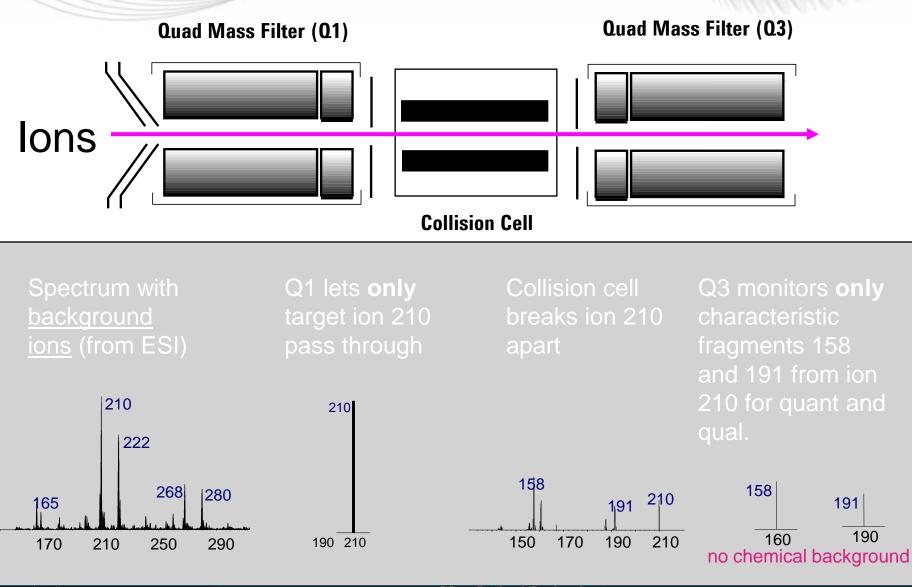
Compound Name	Precursor lon	Product Ion	Dwell	Fragmentor	Collision Energy	Polarity
Acephate	206	165	10	90	5	Positive
Acephate	184	143	10	50	0	Positive
Aldicarb	213	116	10	90	5	Positive
Aldicarb	213	89	10	90	15	Positive
Aldicarb-Sulfoxide	229	166	10	70	5	Positive
Aldicarb-Sulfoxide	229	109	10	70	10	Positive
Dicrotophos	238	193	10	70	0	Positive
Dicrotophos	238	112	10	70	5	Positive
DIMP	181	139	10	70	0	Positive
DIMP	181	97	10	70	5	Positive
Fenamiphos-Sulfone	336	308	10	110	10	Positive
Fenamiphos-Sulfone	336	266	10	110	15	Positive
Fenamiphos-Sulfoxide	320	292	10	110	10	Positive
Fenamiphos-Sulfoxide	320	233	10	110	20	Positive
Methamidophos	142	125	10	70	10	Positive
Methamidophos	142	94	10	70	10	Positive
Oxydemeton-methyl	269	191	10	110	5	Positive
Oxydemeton-methyl	247	169	10	70	10	Positive
Quinoline	130	103	10	110	25	Positive
Quinoline	130	77	10	110	35	Positive
Thiofanox	241	184	10	90	5	Positive
Thiofanox	241	57	10	90	15	Positive

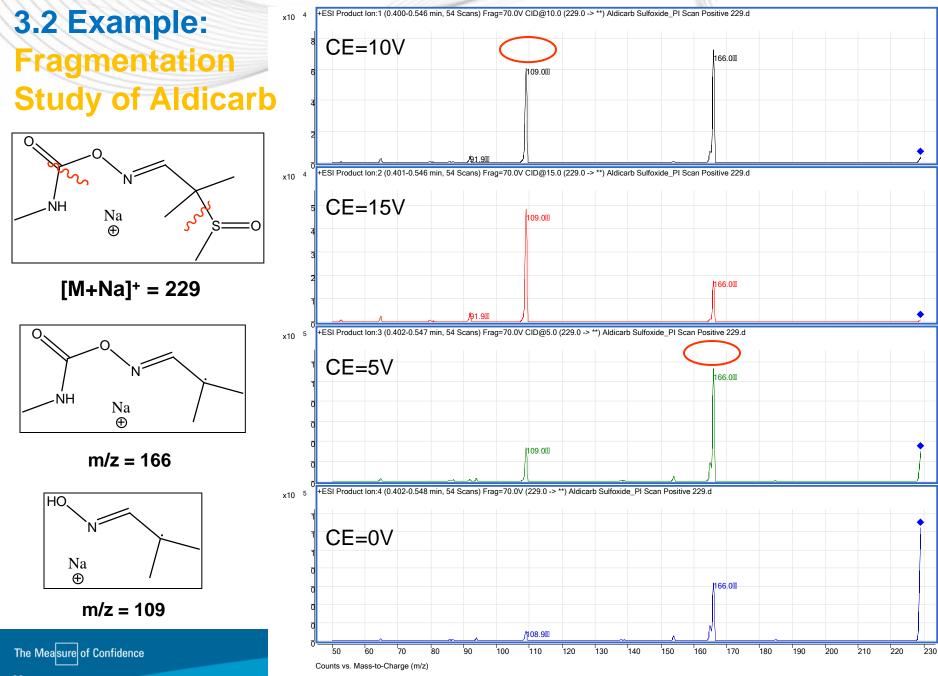
Experimental Methods 2.2 Transitions for Deuterated Standards

Compound	Transition	Frag.	CE
Acephate-d5	190 → 149	50	0
DIMP –d14	195→99	70	5
Methamidophos-d ₆	148 → 97	70	10
Oxydemeton-methyl-d ₆	253→175	70	10
Quinoline-d7	137→81	110	35

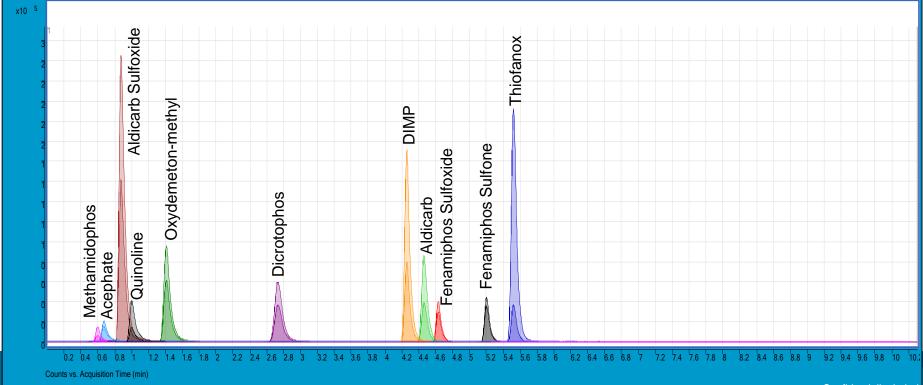
Experimental Methods 2.3 QqQ Experimental Source Parameters

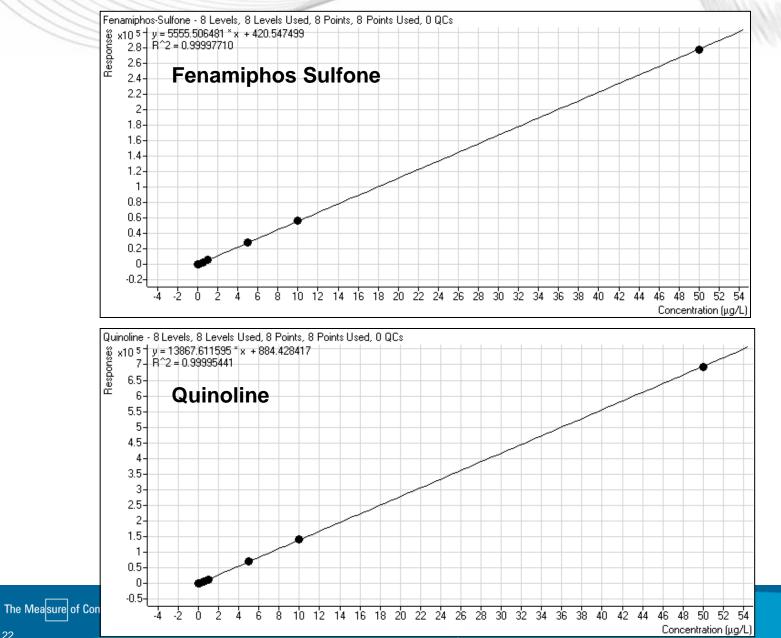
Sample Properties Sampler BinPump TCC MS QQQ						
Tune file Stop tim		Acquisition Source	Chromatogram	Instrument I	Diagnostics	
atunes.TUNE.XML No. No. 201	atunes.TUNE.XML © No limit/As Pump Source parameters					
Browse 6d	1 min	Gas Tem	np: 250	°C	250	°C
lon source	iltering					
ESI 🔽 Agilent Jet Stream 🔽 Pe	Peak width 0.07 min	Gas Flo	w: 10	1/min	10.0	1/min
		Nebuliz	er: 45	psi	45.0	psi
Time segments		Sheath Gas Tem	np: 350	°C	350	°C
	Delta Delta Stored	Sheath Gas Flo	w: 11	I/min	11.0	1/min
▶ 1 0 MRM To MS	200 0 🔽		Positive	Negative		
		Capilla	ry: 4000	V 3500	V 6453	nA
		Nozzle Voltag	ge: 0	V 1500	V	
3.37 cycles/s 297.0 ms/cycle		Chamber Curre	ent		0.16	μΑ
3.37 cycles/s 297.0 ms/cycle						




3.0 Results and Discussion

- 1. EPA Method 538: Organophosphate Pesticides in Drinking Water.
- 2. Direct Aqueous Injection; Thus, No Sample Preparation Needed.
- 3. UHPLC/MS/MS Analysis with Minimal Suppression.
- 4. Part-per-Trillion Detection Limits.


3.1 Multiple Reaction Monitoring



3.3 Extracted Ion Chromatograms of Compounds

Column:	C ₁₈ Eclipse Plus 2.1mm x 50mm, 1.8 um
Mobile phase:	A=ACN, B= H_2O (0.1% Acetic Acid)
Flow-rate:	0.4 mL/min
Gradient:	t=0min. 10% A/90% B
	t=1.7min. 10% A/90% B
	t=10 min. 100% B
Injection volume:	40uL

3.4 Examples of Standard Curves

Confidentiality Label March 20, 2012

3.5 EPA Method 538: Limits of Detection

	Compound	LOD (ppt, ng/L)
	Acephate	1000
	Aldicarb	10
	Aldicarb Sulfoxide	5
	DIMP	50
	Dicrotophos	50
	Fenamiphos Sulfone	50
	Fenamiphos Sulfoxide	50
	Methamidophos	500
	Oxydemeton-methyl	20
	Quinoline	50
The Measure of Confidenc	Thiofanox	10

Confidentiality Label March 20, 2012

4.0 Conclusions

- 1. EPA Method 538 works well on the Agilent Model 1290 UHPLC coupled to the Agilent Model 6460 LC/MS/MS.
- 2. 10 Organophosphates and quinoline are analyzed by direct aqueous injection and UHPLC/MS/MS.
- 3. A second MRM transition is added for QA/QC.
- 4. Detection Limits are in the ng/L range.
- 5. Method is robust and has low suppresion.
- 6. Agilent has the competitive advantage in Direct Aqueous injection with UHPLC/MS/MS analysis.

1. Shoemaker, EPA Method 538: Determination of selected organic contaminants in drinking water by direct aqueous injection-liquid chromatography/Tandem Mass Spectrometry (DAI-LC/MS/MS): EPA/600/R-09/149.

References

2. EPA Method 538:Determination of selected Organic Contaminants in Drinking Water by Direct Aqueous Injection with the Agilent 6460 Triple Quadrupole LC/MS System. Michael Thurman and Imma Ferrer.

Agilent Application Note#5990-9670EN

