

Poster Reprint

AACR 2024 Poster number 2291

Bravo automation of Agilent Avida Targeted Enrichment for High Throughput Detection of Genomic Alteration and DNA Methylation

Ashraf Wahba, Tony Ho, Sarah Johns, Aswati Aravind, Heng Wang, Neelima Mehendale, Gilbert Amparo, Khine Win, Manuel Gomez, Margherita Corioni, Michael Ruvolo, Kyeong-Soo Jeong, Grace Zhao, Douglas Roberts

Agilent Technologies, Santa Clara CA

1

Introduction

Current genomic and epigenomic profiling of cancer tissue DNA or cfDNA (cell-free DNA) in liquid biopsy relies sample-consuming and upon separate, timetechnologies for somatic variant detection or methylation analysis. Here we describe workflow and performance of the Agilent Bravo automated liquid handling platform with the Agilent Avida targeted enrichment solution for somatic variant and methylation profiling. This solution can effectively analyze low-input tumor DNA or cfDNA samples. The Avida Duo workflow enables highly sensitive detection of single nucleotide variant (SNV), insertions and deletion (INDEL), copy number variation (CNV), Translocation (TL), and DNA methylation profiles from a single sample, without any sample splitting.

Experimental

Genomic DNA, FFPE and cfDNA samples were captured using Avida workflow and panels. All library preparation workflows were automated on Bravo NGS workstation (see below).

Workflow schematic for Avida DNA, Methyl and Duo

Experimental

All Bravo automated samples were sequenced as 2x150 paired end reads (Illumina). Samples were aligned with bwa.mem. Methyl seq samples were aligned with Bismark. Sequencing depths were tailored to input levels, panels and variant detection requirements (duplication rate target \geq 80%). Variant detection and methylation index were determined using Alissa Reporter (Agilent, Inc). Ultra-low allele frequency variants in cfDNA samples were identified using VarDict (version 1.5.0) and filtered with an internal analysis pipeline. CNVs were analyzed using CNVkit (version 0.9.8). Translocation analysis was performed using GeneFuse software (version 0.6.1).

Results and Discussion

Figure1: High reproducibility across samples processed on Bravo NGS workstation. Hapmap NA24385 (Coriell, Inc) and Human cfDNA control (Biochain, Inc) were captured and analyzed at theoretical coverage of

~39,000X (A)List of targets in the Focused Cancer Panel and average coverage in cfDNA samples. (B)High percent on target and fraction of targets with base coverage >1000X (C)Uniformity measured by Fold-80 base penalty (Hsmetrics, Broad Institute)(D)High recovery of input material demonstrated by deduped

mean target coverage.

Variants detected in cfDNA reference standard samples using Avida DNA workflow and Expanded cancer panel (340Kb) on Bravo NGS workstation

RET RICTOR ROST SMARCA4 SMARCB1 SMO STAG2 STK11 TERT TP53 TSC1 TSC2 VHL

3						
Sample	e Type of Variant	Gene	Variant	Panel	Vendor Reported %VAF	Detected %VAF (n=8)
	CNV	MET	Amplification		4.5 copies	7 copies
		GNA11	c.626A>T		5.6	5.2
		AKT1	c.49G>A c.1633G>A Expanded Plus c.2300_2308dup c.2235_2249del	5	4.9	
LID706	SNV	PIK3CA		5.6	5.2	
HD/60		EGFR		5.6	4.4	
		EGFR			5	3.6
	Translocation	SLC34A/ROS1			5.6	4.5
	Translocation	RET/CCDC6			5	1.3

Table 1: Variants detected in Structural Multiplex cfDNA Reference Standard HD786 (Horizon Discovery, Inc) samples using Avida DNA workflow captured with Expanded Cancer panel. All samples were analyzed at a theoretical coverage of ~22,000X.

Results and Discussion

SNVs, CNVs and Translocations detected in SeraCare V4 ctDNA (beta test material) reference sample

		Detected	%VAF using	Detected %VAF using Focused		
Cono	Variant	Expanded cancer panel		panel		
Gene	variant	10ng, 0.5% 10ng, 0.5%		10ng, 0.5%	10ng, 0.5%	
		Replicate1	Replicate 2	Replicate 1	Replicate 2	
AKT1	p.E17K	0.35	0.50	0.49	0.47	
AR	p.H875Y	0.77	0.77			
ATM	p.C353fs	0.29	0.57	- Not targ	eted	
BRAE	p.V600E	0.33	0.27	0.11	0.29	
BRCA1	n K654fs	0.60	0.59	0.11	0.29	
BRCA2	p.100416	0.01	0.00	Not tara	lated	
	p.11204013	0.39	0.52	Not targ	eleu	
	p.FT_STZIIISAAGSSIVILF	0.14	1.00	-		
GHEKI	p.122015	0.46	1.00	0.00	0.00	
	p.E/46_A/50del	0.33	0.45	0.39	0.29	
	p.S/681	0.41	0.29	0.35	0.23	
FGFR	p.D//0_N//TinsG	0.55	0.28	0.30	0.26	
20111	p.T790M	0.62	0.45	0.51	0.43	
	p.C797S	0.67	0.46	0.33	0.46	
	p.L858R	0.24	0.45	0.51	0.49	
ERBB2	p.A775_G776insYVMA	0.47	0.62	0.41	0.27	
ESR1	p.D540G	0.39	0.39	0.70	0.35	
FGFR3	p.S249C	0.41	0.20			
	p.061R	0.50	0.60	1		
HRAS	p.G13R	0.34	0.40	1		
IDH1	p.R132C	0.47	0.68	Not tare	leted	
10111	p.R1400	1.02	1.01	l		
IDH2	p.11400	1.02	0.02	-		
VIT	p.N172N	0.46	0.92	-		
KI I	p.0810V	0.40	0.00	0.20	0.55	
KDAO	p.Q01H	0.43	0.90	0.30	0.55	
KRAS	p.G12C	0.72	0.71	1.23	0.87	
NAN DOLLA	p.GT2D	0.83	0.60	1.02	1.08	
MAP2K1	p.P124S	0.53	0.35	0.50	0.24	
MEI	p.11024fs	0.57	0.57	0.42	0.29	
MLH1	p.E/8ts	0.51	0.31	_		
MSH6	p.G686fs	0.38	0.16	Not tard	leted	
MTOR	p.S2215Y	0.24	0.60	literarg	eteu	
NF1	p.F1247fs	0.87	0.77			
NRAS	p.Q61R	0.65	0.38	0.28	0.41	
NTRK1	p.G595R	0.49	0.25			
NTRK2	p.G639R	0.65	0.66]		
NTRK3	p.G623R	0.45	0.59	Not tard	eted	
PALB2	p.N280fs	0.55	0.43	1		
PDGFRA	p.D842V	0.52	0.14	1		
	p E545K	0.24	0.44	0.28	0.40	
PIK3CA	p.E.040K	0.50	0.36	0.23	0.46	
	n N1068fe	0.55	0.34	0.32	0.46	
PM92	n P297fe	0.33	0.10	0.02	0.40	
	n TP760*	0.40	0.19	-		
FIUTI	p.1K/09*	0.50	0.44	-		
PTEN	p.K44015	0.74	0.49	-		
	p.P421fs	0.55	0.43	Not tard	eted	
RAD51C	p.S81*	0.20	0.37	-		
	p.G114ts	0.31	0.4/	4		
RAF1	p.S257L	0.39	0.23	4		
RB1	p.R251*	0.33	0.70			
RET	p.M918T	0.39	0.44	0.19	0.64	
SMARCB1	p.R40*	0.28	0.34			
STK11	NM_000455:c.734+1G>T	0.49	0.33	Not to	lated	
TEDT	NM_198253:c124C>T	0.50	0.25	Not targ	elea	
TERT	NM_198253:c146C>T	0.41	0.20	1		
	p C242fs	0.46	0.42	0.26	0.98	
TP53	n R2480	0.55	0.46	0.23	1 01	
11 00	n R273H	0.50	0.50	0.68	0.52	
TSC1	NM 000368:0 1262±10>T	0.39	0.30	0.00	0.02	
	NIM_000549:o 2640 1054	0.71	0.40	Not tora	lated	
1302	NIVI_UUU346.C.204U-TG>A	0.03	0.42		eleu	
VHL		0.34	0.05	0.44	0.50	
	AVerage	1 0.50	I U 48	044	1 0.50	

В

А

CNV gene	Fold change detected	0	Iranslocation	Irans
expected Fold change 1.3)	(n=2)			
AKT2	1.27		0074-0001	Late
CCND1	1.97	1	CD74::RUS1	Intr
ERBR2	1.32		EML4::ALK	Intro
5050	1.02		ETV6::NTRK3	Intr
FGF3	1.43		ECED2-TACC2	Ev
FGFR1	1.35		FGFRSTACCS	EX
MET	1.68		NCOA4::RET	Intr
MYC	1.33		PML::NTRK2	Intr
		1	TPM3::NTRK1	Int

Tran	slocation	Translocation location	0.5%, 10ng		
			r1	r2	
CD7	4::ROS1	Intron 6::Intron 34		detected	
EM	L4::ALK	Intron 13::Intron 19	detected	detected	
ETV6::NTRK3 FGFR3::TACC3		Intron 5::Intron 14		detected	
		Exon 18::Intron 7	detected	detected	
NCC)A4::RET	Intron 7::Intron 11	detected	detected	
PML	.::NTRK2	Intron 2::Intron 12	detected		
TPM	3::NTRK1	Intron 7::Intron 9	detected	detected	
		Detection rate	71%	86%	

Table 2: Low allele frequency variants at 0.5% VAF were detected in 10ng input SeraCare V4 ctDNA (LGC, Inc) captured with Focused Cancer Panel or Expanded Cancer Panel using Avida DNA workflows. Expanded cancer panel covers 60 SNP/INDELs (0.5% VAF), 7 translocations (0.5% VAF) and 7 CNVs (1.3-fold amplification) in the SeraCare V4 ctDNA sample. Theoretical coverages of ~222,000X and ~44,000X were used for variant detection with Focused Cancer panel and Expanded Cancer panel respectively.(A) SNV allele frequencies detected in SeraCare V4 ctDNA (LGC, Inc) (B) CNVs detected with Avida DNA Expanded Cancer Panel.

Results and Discussion

Combined detection of variants and DMRs from paired cancer FFPE/cfDNA samples captured using Expanded Cancer Panel and Methyl 3400 DMR Cancer Panel using Avida Duo workflow

4	Case number	Cancer type	Overal Clinical Stage	Tumor fraction in FFPE	DIN value NAT	DIN value FFPE	Variants	Classification	Vendor reported % VAF in FFPE	Detected % VAF in FFPE	Detected % VAF in cfDNA (Derived from 1ml plasma)
	1	Colorectal Cancer, Adenocarcinoma	II-A	50%	N/A	2.8	KRAS, c.1397 G>A TP53, c.524G>A	Pathogenic Pathogenic	20 18	15.2 25.4	0.69 1.00
	2	Colorectal Cancer, Adenocarcinoma	II-A	70%	N/A	2.5	CTNNB1, c.110C>T EZH2, c.2239G>T MSH2,c.1738G>T PIK3CA, c.1624G>A, PIK3CA, c.1070G>A PTEN, c.389G>A	Pathogenic Likely Pathogenic Pathogenic Pathogenic Pathogenic Pathogenic	27 26 30 22 23 55	17.5 16.2 13.8 12.7 10.6 30	ND 0.09 0.07 ND 0.05 0.04
	3	NSCLC	III-B	100%	5.4	4.8	TP53, c.464C>T SMARCB1, c.478A>T (Based on tumor- normal comparison)	VUS Stopgain	N/A	5 7.9	0.04 0.08

D									
D	Case number	Cancer type	Overal Clinical Stage	Tumor fraction in FFPE	DIN value NAT	DIN value FFPE	Methylation index score in NAT	Methylation index score in FFPE	Methylation index score in cfDNA
	1	Colorectal Cancer, Adenocarcinoma	II-A	50%	N/A	2.8	N/A	59.485	2.122
	2	Colorectal Cancer, Adenocarcinoma	II-A	70%	N/A	2.5	N/A	65.108	0.328
	3	NSCLC	III-B	100%	5.4	4.8	1.352	8.155	0.856
		Control cfDNA (n=4)	N/A	0%	N/A	N/A	N/A	N/A	0.206

Table 3: Variants and DMR (differentially methylated regions/Methylation index score) detected from normal tissue adjacent to tumor (NAT), tumor FFPE and cfDNA samples. All samples were captured using the Avida DNA Expanded Cancer panel followed by the Methyl 3400 DMR Cancer panel (876Kb) using the Avida Duo workflow. Tumor samples were analyzed at ~22,000X theoretical coverage and cfDNA samples were analyzed at ~100,000X for variant detection. All tumor and cfDNA samples were analyzed at ~3400X for DMR detection.(A) SNVs detected in tumor FFPE were also detected in matched cfDNA samples (B) Methylation index scores in NAT, Tumor FFPE and cfDNA captured with Methyl 3400 DMR Cancer Panel. ND=Not detected

Conclusions

- Avida workflow on Bravo, at 96 sample capacity, exhibits highly reproducible on target performance, uniformity, and efficient molecule recovery (~75% for 3ng cfDNA)
- Single day turnaround for Avida DNA (5-7 hrs) or Methyl (6-8hrs) workflows.
- SeraCare V4 ctDNA reference captured with the Avida DNA Expanded Cancer Panel showed 100% detection for 60 SNVs/Indel (0.5% VAF), 100% detection for 7 CNVs (1.3-fold amplification) and 71-86% detection for translocations (0.5% VAF).
- FFPE and cfDNA samples from stage II/III cancers processed with Avida Duo workflow showed:

(C) Translocations detected with Avida DNA Expanded

Cancer Panel

- Variants identified in tumor FFPE sample were also detected in cfDNA samples.
- FFPE and cfDNA samples from cancer patient samples exhibited higher methylation scores compared to controls.
- Avida Duo workflows allow combined analysis of low frequency variant allele detection and methylation with as little as 3ng cfDNA

For Research Use Only. Not for Use in Diagnostic Procedures.

This information is subject to change without notice.

PR7001-2423

© Agilent Technologies, Inc. 2024 Published in USA, April 4, 2024

