

Vacuum Technology for Mass Spec Instruments

John Screech Agilent Vacuum john.screech@agilent.com 289-221-6483

Vacuum For Mass Spectrometry

This Webinar discusses how vacuum technology is a fundamental component **Mass Spectrometers.**

Beginning with the simple question **'Why do we need vacuum'** we will move on to discuss the types of vacuum technology typically used on mass specs, and then review the evolution of vacuum subsystems from the 1990's to the present.

Vacuum for Mass Spectrometry

- Why Mass Spectrometry Needs Vacuum
- Vacuum Technology
 - Measuring Vacuum
 - Rough Vacuum & High Vacuum Pumps
- System Design Concerns
- Vacuum for Mass Spec
 - Evolution of Vacuum Subsystem Design
 - Direction and Future Trends

© Agilent Technologies, Inc. 2015

Why We Need Vacuum for Mass Spectrometry

Avoid Signal Loss

- Avoid signal losses from collisions with residual (background) gas species by creating a long *MEAN FREE PATH*
 - Rough Vacuum (10⁻³ Torr): 5 cm
 - High Vacuum (10⁻⁶ Torr): 50 m
 - Ultra High Vacuum (10⁻⁹ Torr): 50 km

Remove Chemical Contamination

- Avoid signal losses from reactions with residual (background) gas species by creating a CHEMICALLY CLEAN ENVIRONMENT
 - Rough Vacuum (10⁻³ Torr): 3E13 part/cm³
 - High Vacuum (10⁻⁶ Torr): 3E10 part/cm³
 - Ultra High Vacuum (10⁻⁹ Torr): 3E7 part/cm³

Prevent Arcing

- Many mass spec elements require the ability to maintain *LARGE ELECTRIC POTENTIAL* without 'arcing'
 - > Electrostatic Lenses (-250 \rightarrow +250 DC)
 - > Quadrupoles (-4K \rightarrow +4K RF + DC)
 - ▶ Ion Detectors (-7K DC \rightarrow +7K DC)

Rough, High and Ultra-High Vacuum

MEASURING ROUGH VACUUM: <u>Atm - 10⁻³ Torr</u>

Thermocouple Gauges

- **CONVECTION**: Maintain filament at constant T (above ambient)
 - Pressure ∝ Current
 - Atm \rightarrow < 1 x 10-3 Torr
- **THERMOCOUPLE**: Maintain filament at constant CURRENT
 - P ∝ T
 - Slow response time; non linear above ≈ 2 Torr

Thermal (Pirani) Gauge

- Energy (temperature) loss from a heated filament upsets the balance of a Wheatstone Bridge (typ) circuit
 - > Pressure ∞ Voltage (atm 10⁻³ Torr)
 - Gas type dependent (based on Thermal Capacity)
 - Extremely non-linear above 1 Torr): Caution when measuring Argon in this range

Capacitance Manometer

- Pressure differential distorts metal diaphragm, changing capacitance of a calibrated circuit
 - \succ Pressure ∞ Capacitance
 - Full range from 1000 Torr to 0.1 Torr (approx. 3½ decades/gauge)
 - Fastest response, most accurate, gas type independent

https://cds.cern.ch/record/455555/files/p75.pdf

MEASURING HIGH VACUUM: <u>10-3 – 10-8 Torr</u>

Hot Ionization (BA) Gauge

- Electrons from filament (accelerated by e-field on spiral grid) strike 'background' gas molecules creating M⁺ ions
 - ➢ lons accelerated towards central collector resulting ion current ∞ to gas density (pressure!)
 - Gas Type Dependent (Ionization Potential)
 - Accuracy: ± 20% f.s. (typical)
 - 10⁻³ to 10⁻¹² Torr Operating Range

Inverted Magnetron Gauge (IMG)

- Agilent (Varian) invention
- Electrons from plasma inside small metal cylinder (accelerated by magnetic field) create M⁺ ions
 - Coulomb attraction drives M+ ions into end plates – resulting ion current ∞ to gas density (pressure!)
 - Gas Type Dependent (Ionization Potential)
 - Accuracy: ± 50% f.s (typical)
 - 10⁻³ to 10⁻¹¹ Torr Operating Range

Wide Range Gauges

 Combination Gauges combine complementary technologies to produce Wide Range Gauges

FRG-720 Full Range

PCG-750 Pirani/ Capacitance

https://cds.cern.ch/record/455555/files/p75.pdf

CREATING VACUUM <u>20 – 0.01 Torr</u>

Oil-Free Roots Pumps

- High durability 'roots' pumping mechanism ideal for aggressive gas species
 - Oil free
 - Typically water cooled
 - Typically > 100 m3/hr

Dry Scroll Pumps

- Dual or Single stage reciprocating scroll sets seal without oil!
 - Clean, quiet alternative to oilsealed RVPs
 - 3 m³/hr to 30m³/hr pumping speeds
 - Low millitorr ultimate pressure

 Trend towards Large Capacity (> 40 m³/hr) Single Stage pumps to evacuate Interface region (few Torr) AND back Turbos

CREATING VACUUM <u>10-3 – 10-8 Torr</u>

Vapor Jet (Diffusion) Pumps

- High velocity Oil Jet (vapor) from diff-stack strikes gas molecules:
 - Oil mist condenses at (water) cooled body of the pump
 - Cryo-cooled baffles at pump inlet can *reduce* oil mist from entering process chamber

Turbo-molecular Pumps

- High speed (35K+ rpm) blades strike gas molecules directing them towards pump base
 - Molecular Drag stage (ie. TwisTorr stage, shown) compresses gas 10⁴ x & create torturous path for light gases
 - Mechanical, hybrid, or mag-lev bearings

Cryo-Pumps

- He recirculation system keeps large 1st stage array at 77K (water) & smaller 2nd stage array at < 15K (N₂, Ar, CO, O₂)
 - H₂, He, Ne pumped by charcoal on underside of 2nd stage
 - > 800 60K I/s pumping speed
 - > $10^{-3} 10^{-10}$ Torr pressure
 - Requires periodic 'regeneration'

Turbo-Molecular Pump: Blade Section

- How it Works:
 - Large INLET coupled directly to chamber allows highest probability of a particle entering the pump
 - BLADES transfer momentum to particles; STATORS have complementary angle to reflect the particle
 - Blade/Stator ANGLE decreases to prevent back-migration

Turbo-Molecular Pump: Macro-Torr Drag Stage

After particles exit the lowest blade stage (approx. 10⁻³ Torr) Spinning Disc transfers momentum to them during residence time on the disc

Turbo-Molecular Pump: Molecular Drag Stage

• How it Works:

- Molecular Drag Stage transfers momentum to particles during residence time on a rotating element and directs the motion in a confined channel
 - Rotating blade design can only compress gas to $\approx 10^{-3}$ Torr (max) & has poor pumping for light gases

MacroTorr ('Gaede')

TwisTorr ('Siegbahn')

Holweck

Gas flow in centripetal and centrifugal direction through TwisTorr channel

Turbo-Molecular Pump: Molecular Drag Stage

- How it Works:
 - TwisTorr[®] Agilent's most advanced Turbo-Drag Stage! The MacroTorr's 'stripper surface' is replaced with stators featuring complex channels to guide and compress gas molecules through centripetal and centrifugal motion.

Turbo-Molecular Pump: Rotor Suspension

Mechanical Bearing Turbos:

- Ceramic Balls in SS housing
- Grease or Oil-Iubricated
- Pre-load, alignment and shock resistance are keys
- Some designs use 1x Mechanical Bearing and 1x Permanent Magnetic Bearing ('Hybrid' suspension)

Magnetic Levitation Turbos:

- 4 Separate magnetic bearings support and position the 'floating' rotor
- 'Safety' or 'Touch-down' bearings support rotor during ramp-up and shut-down
- Reduced electronics & computing cost help!

Getting to near-UHV Pressures (Time-of-Flight Section)

Challenges in Reaching HV and near-UHV Pressures

Material Selection

- "If you don't want to pump it out, Don't put it in!"
- Choose materials based on the following criteria:

Permeation Rates

Bake-Out Temperature

Outgassing Rates

Chemical Compatibility

Mechanical Properties

Electrical Properties

• CERN 'Recipe' for cleaning parts for UHV:

https://pdfs.semanticscholar.org/fae5/6ae03f7c841f7aae5462a2631bbbbeed529f.pdf

Outgassing & Diffusion

- TEMPERATURE is the single most effective way to <u>increase</u> the outgassing and diffusion rates of components inside the vacuum chamber, allowing our HV pumps to remove the gas (mostly water)
 - Heating (and Cooling!) must be done uniformly
 - Effectiveness is proportional to Time (linear) and Temperature (exponential!)
 - Getting the heat to internal parts a challenge!

Vacuum System Troubleshooting

Pumpdown Curve

•

 Slope (\Delta p/\Delta t) can help determine if vacuum leak is 'Real' (outside-in) or 'Virtual' (outgassing or desorption)

Leak-Up Rate

 Slope (\Delta p/\Delta t can help determine if vacuum leak is 'Real' (outside-in) or 'Virtual' (outgassing or desorption)

Timo	Pressure	Rate of	Pressure	Rate of
Time	(System A)	Rise	(System B)	Rise
0	5.00E-04		5.00E-04	
5	5.00E-03		5.00E-03	
10	7.00E-03	Virtual	7.00E-03	Real
15	9.10E-03	0.42	8.00E-03	0.20
20	1.10E-02	0.38	9.00E-03	0.20
25	1.26E-02	0.32	1.00E-02	0.20
30	1.40E-02	0.28	1.15E-02	0.30
35	1.52E-02	0.24	1.32E-02	0.34
40	1.65E-02	0.26	1.45E-02	0.26
45	1.77E-02	0.24	1.60E-02	0.30
50	1.87E-02	0.20	1.70E-02	0.20
55	1.98E-02	0.22	1.78E-02	0.16
60	2.07E-02	0.18	1.90E-02	0.24
65	2.16E-02	0.18	1.98E-02	0.16
70	2.22E-02	0.12	2.06E-02	0.16
75	2.26E-02	0.08	2.16E-02	0.20
80	2.29E-02	0.06	2.25E-02	0.18
85	2.31E-02	0.04	2.40E-02	0.30
90	2.32E-02	0.02	2.55E-02	0.30

Helium Leak Detector

<u>≥</u> 10 ⁻⁵	Qualitative: Real or VirtualTime Consuming	
<u>≥</u> 10 ⁻¹⁰	 Good for Small Sealed Parts Special Equipment & RSO, High Cost 	
<u>≥</u> 10 ⁻¹²	Fast, Non-DestructiveNo Operator JudgementLow Equipment Cost	
	≥10 ⁻⁵ ≥10 ⁻¹⁰ ≥10 ⁻¹²	 ≥10⁻⁵ Qualitative: Real or Virtual Time Consuming Good for Small Sealed Parts Special Equipment & RSO, High Cost Fast, Non-Destructive No Operator Judgement Low Equipment Cost

- HLD operated in 'Sniffing' mode to detect He escaping from the part or chamber
- 'Bombing' is a multi-step process where components are pressurized then sniffed

Simple Magnetic Sector Mass Spec Vacuum System

System Design Features

- <u>Turbo Molecular Pump</u> evacuates Spectrometer tube to 10⁻⁵ Torr Pressures
- <u>Contra-Flow Design</u> makes use of Turbo Pump's (relatively) poor He compression
- <u>**Dual Stage RVP</u>** or <u>**Scroll</u> improves Foreline compression (prevent He backflow)**</u></u>
- <u>Single Stage Scroll</u> can be backed by small Diaphragm Pump to achieve same result

Double Focusing Magnetic Sector Mass Spec Vac System

System Design Features

- Large Capacity Turbo or Dual Stage
 Primary Pump required to reduce inlet gas load
- <u>Dedicated Backing Pump</u> for Mag Sector Section maximizes compression
- <u>System layout</u> complicates move to Multi-Inlet Turbo Pumps

<u>Trends</u>

• Movement to Oil-Free Scroll pumps vs RVPs (contamination)

GC Quadrupole or Ion Trap Mass Spec Vac System Design

System Design Features

 Single inlet Turbo Pump (typ. With Drag Stage) backed by Oil-Sealed RVP or Multi-Stage Diaphragm Pump

<u>Trends</u>

- Movement to Oil-Free Scroll pumps vs RVPs (contamination) or Diaphragm Pumps (maintenance)
- Fewer Diffusion Pump systems produced
- Improved Vacuum Sub-System Cost & Reliability

Ramping voltages selectively ejects Mass Species from the trap

Traditional Quadrupole LC-MS Vac System Design

System Design Features

- <u>Dedicated</u>, <u>Dual Stage RVPs</u> required to 'back' non-compound Turbo Pumps
- <u>28 m3/hr RVP on Interface</u>: The Speed of Light for Single f Power
- Large Gas Load in 10⁻³ Torr (Transition Flow) region required large pump inlet sizes
- Vacuum Sub-System Cost
- Vacuum Sub-System Reliability
 - Ceramic Ball Bearing Turbos
 - Optimized Cooling Systems

Modern Quadrupole LC-MS Vac System Design

System Design Features

- <u>Drag Stage Turbos</u> eliminate need for dedicated dual-stage RVPs
- Inverter Driven RVPs obliterate 28 m³/hr limit on Interface/Backing Pump Size
- <u>Large Gas Load</u> in 10⁻³ Torr (Transition Flow) region require large pump inlets
- Large Single Stage RVPs reduce cost

- Larger size (or multiple) Single Stage RVP backing Pumps (up to 120 m³/hr!)
- Some movement to Oil-Free Pumps

Optimized Quadrupole LC Mass Spec Vacuum System Design

System Design Features

- <u>Dual-Inlet Turbo Pump</u> evacuates two independent regions to different vacuum levels
 - Pump custom designed to match customer gas loads
- Restricting 10⁻³ Torr Region inlet has SOME impact on pumping speed (<u>Transition Flow</u>)
- Vacuum Sub-System Cost (MS RVPs)

- Insertable Pumps Optimize Conductance & Reduce Cost
- Some movement to Oil-Free Pumps

Triple Inlet Turbo LC-MS Vacuum Sub System

System Design Features

 TRIPLE Inlet Turbo Pump has direct inlet to drag stage (0.1 – 0.5 Torr) – allowing higher inlet gas flows

- Insertable Pumps Optimize Conductance
- Some movement to Oil-Free Pumps

Quadrupole Time-of-Flight Vacuum Sub System Design

System Design Features

- <u>Multi-Pass</u> TOF designs replacing single- or dual-pass systems (reduces system size; complicates Turbo placement)
- <u>Dedicated Turbo Pump</u> for TOF Section

- <u>Other vacuum regions</u> used to 'back' TOF section Turbo (maximize compression/ negligible gas flow)
- Movement to **<u>Oil-Free Pumps</u>**

Summary

Vacuum Measurement

- Balance between system cost & precision required
- Reducing #gauges impacts diagnostic capability

Pump Technology

- Single Stage RVPs and Compound Turbo Pumps dominate
- Move to Oil-Free Scroll Pumps driven by sample integrity and maintenance simplicity
- Lower vacuum pressures (near-UHV) prompt some use of ION PUMPS

Vacuum Sub-System Design

- "Bespoke" Multi-Inlet Turbos represent the ultimate in optimization but limit vendor selection (especially with insertable 'cartridge style' pumps)
- Vacuum vendors need to be seen at technology partners vs commodity providers

TRAPS

Pressure (torr

Agilent Technologies, Inc. 20

Agilent Vacuum Education Programs

To learn about more Agilent Vacuum Technology Education programs, including:

- Basic Vacuum Practice and Introduction to Leak Detection classes
- On-site Vacuum Technology Seminars
- Custom multi-day classes at your site

...please contact Agilent Vacuum Customer Care (800-882-7426 – Option 3) or e-mail Robin Arons (<u>robin.arons@agilent.com</u>).

Click <u>HERE</u> to access Agilent's excellent video series on *Care and Use of Turbo Pumps*.

Click <u>HERE</u> for more information on *Helium Leak Detection*, including details on Agilent's new HLD instrument.

