

Powerful Software Solutions for Drug Metabolite Quantitation and Identification

Powerful Software Solutions for Drug Metabolite Quantitation and Identification

In this webinar we will discuss LC/MS and NMR software workflows, including new algorithms to add power to your drug metabolite quantitation and identification

Today's Presenters from Agilent Technologies:

Steve Madden	Doug McIntyre			
Software Product Manager, MassHunter	Software Product Manager, MassHunte			
Frank Delaglio	Dave Russell			

Today's Host:

Lauren Constable Head of Commissioning, FSG publishers of *Bioanalysis*

Steve Madden

Software Product Manager, MassHunter Agilent Technologies

Doug McIntyre

Software Product Manager, MassHunter Agilent Technologies

Powerful Software Solutions for Drug Metabolite Quantitation and Identification

- Metabolite Identification
- Quantitative Analysis
- Qual/Quan

June 25, 2013

Steve Madden Doug McIntyre Agilent Technologies Inc. California, USA

Metabolite ID in the Drug Discovery & Development

Quantitation in ADME/PK

Agenda

- Metabolite Identification
 - MassHunter Metabolite ID workflow determining biotransformations
 - Molecular Discovery's Mass-MetaSite workflow for structure prediction and batch processing
- Quantitative Analysis
 - --Study Manager and Optimizer for automating Acquisition
 - --Compliance features
 - --LIMS connectivity
- Qual/Quan Application

Metabolite Identification Software Tools

- Remove the bottleneck of data analysis and interpretation
- MassHunter Metabolite ID
- Molecular Discovery's Mass-MetaSite
 - Many Pharma companies use Mass-MetaSite as a global software tool for metabolism studies

MassHunter Metabolite ID: Untargeted approach based on MFE comparison

Best approach for expected and unexpected metabolites

- Untargeted approach via comparison of MFE
 Compound lists
 - Sophisticated Sample-Control Comparison Algorithm based on Molecular Feature Extraction (MFE) allows more comprehensive detection of differences via exploitation of mass and RT resolution.
 - Best suited to find and confirm expected and unexpected metabolites
 - Find all differences and THEN confirm and identify
 - Confirm expected and identify unexpected with multiple and more sophisticated algorithms

Mass-MetaSite Software

- A desired solution for rapid metabolite Identification

- Fully automated data analysis and structure elucidation
- Site of metabolite localization based on MS/MS data
 - Not on in silico predictions as in Metasite
 - Metasite predictions used to designate the most likely SoM within a Markush structure
- Metabolite structure proposal relies on included reaction mechanism (Phase I & II biotransformations)
- Batch processing capability for high throughput application

Mass-MetaSite Data Analysis Workflow

The entire process only takes several minutes

LC/MS Quantitation: Two Major ADME/PK Applications

- Bioanalysis (PK, BA/BE)
- Measure drug candidate concentration (and metabolites) over time in animals or humans
- May require compliance option

- (ADME) Drug Discovery Screening
- Determine properties of lead molecules (permeability, metabolic stability, ...)
- Often 500–1000 compounds/week

MassHunter Study Manager for Automating Workflow

- User selects workflow and submits sample sets (studies) using Excel or text files
- Coordinates acquisition, compound optimization, quantitation and report generation
- Uses different Study Creators for each workflow
 - Generic BioAnalysis
 - Watson LIMS connectivity
 - ADME Screening
- Can be used in compliant mode

Fully Automated Quantitation Workflow

* MassHunter Study Manager Home Settings Settings Submit Status Submit Study Execution Study Submission Study Execution Study Submission Study Execution Study Submission Study Execution Stelect Study Creator Name: Select Study Creator 201208_WebEx3.s Submiter: Dougem Bioanalysis Status: Drug Discovery Screening	1. Specify input File 2. Specify Quant Method 3. Specify Report 4. Submit and go!
Optimization: Optimization of compound 'dout 100% completed Worklist Import Worklist.Only Pending Studies Completed Studies Name Path Submit 1 • demoil_2012021 GMassHunteris CND0 2 OS1012_demoto_ C:MassHunteris CND0 Constant Constant Compound 'dout Constant Compound 'dout For Help, Press F1 For Help, Press F1 Completed Studies	Worklist Import Import File Import File Sudy File Import File Submitter: Import File Submitter: Import Canced Import File Import File Import File Import File Import File Import Canced Import File <

HT Targeted Quant in Drug Discovery Screening – "in vitro"

Which of the synthesized compounds will be viable drug candidates?

Customer Presentation

Page 16

Metabolic Stability Profiles

-	Nefazodone	Nimodipine	Nicardipine	Midazolam	Propafenone	Terfenadine	Ticlopidine	Buspiror
0	100	100	100	100	100	100	100	100
5	26.5	49.9	62.7	78.5	103	97.3	78.1	115
10	7.66	27.2	40.3	52.0	101	97.8	61.5	102
20	0.202	4.86	8.60	22.0	88.5	85.1	48.8	93.9
30	0.107	1.37	1.91	6.09	69.6	80.1	27.1	80.2
60	0.026	0.043	0.177	0.150	8.92	45.8	16.0	54.5
1000		M	etabolic S	Stability	Profiles			
100 [*					efazodone 1idazolam
¹⁰ ui						ж		icardipine
e								imodipine
Drug Re								imodipine ropafenone erfenadine
of Drug Rei % 0.1 -						× *		imodipine ropafenone erfenadine iclopidine uspirone
ot Drug Rei 0.01	10	20	30	40	50	60		imodipine ropafenone erfenadine iclopidine uspirone

Agilent Technologies

Customer Presentation

Bioanalysis Using Watson LIMS Workflow

Page 18

Targeted Quant in Bioanalysis

What are the pharmacokinetic properties of the drug? What does the body do to the drug?

Agilent Technologies

Customer Presentation

The Measure of Confidence

"Software features that support Compliance"

Page 20

Customer Presentation

Compliance Key Features

Acquisition/Study Manager

- Mandatory Login
- Pre-defined Role Based Security
- UI operations disabled based on Privileges
- ✓ Data file overwrite protection
- Tamper Detection Capability for Methods and Data files
- Can require authentication and reason for allowed actions
- Method versioning
- Audit Trail on method changes

Quantitative Analysis

- Mandatory Login
- Configurable Role Based Security
- Operations can be disallowed based on defined capabilities
- Tamper Detection Capability for Results
- Password locked reports
- Can require authentication and reason for allowed actions
- ✓ Audit Trail on all quant actions

Page 21

OpenLAB ECM

The ultimate scientific data management solution for the laboratory

Centralized data management for Agilent MassHunter

Customer Presentation

Qual/Quan: on a Single Platform

- more information in a single analysis

Simultaneous Metabolite Identification

10 min incubation sample

Metabolic Stability and Metabolite Profiles

Buspirone (1.0 µM in RLM)

1-PP: pyrimidinylpiperazine

Summary and Conclusions

For Metabolite ID workflows

MassHunter Qual: A great tool for determining specific biotransformations based on MS/MS data. Uses untargeted approach.

Mass Metasite: A software provided through Molecular Discovery with the ability for structure prediction and correlating predictions to MS/MS data

For Quantitative workflows

MassHunter Quant

Study Manager: fully automate both high throughput ADME screening and BioAnalysis quantitative measurements

LIMS integration and Compliance

For Qual/Quan

Agilent's 6550 LC/Q-TOF has sufficient quantitative performance to allow performing bioanalytical measurements and providing the accurate mass MS data needed for metabolite identification from one injection

Thank you!

Agilent Technologies

Frank Delaglio

Marketing Manager, Magnetic Resonance Software Agilent Technologies

Dave Russell

Applications Scientist, NMR Division Agilent Technologies

Agilent Technologies

Magnetic Resonance for ADME/T Studies Making the Complex Simple

Frank Delaglio and Dave Russell

Agilent Technologies

Frank Delaglio

NMR Applications in ADME

What can NMR do in an ADME laboratory?

The two primary tasks faced in an ADME study are identification and quantification of metabolites.

NMR spectroscopy has been the definitive tool for structural studies over many years. Modern probe technology allows researchers to collect high quality structural data on very small samples, while advances in console design have opened the door to absolute concentration measurements on any sample.

While Mass Spectrometry is the predominant technique used for ADME investigations, NMR has a critical role to play in this environment, too.

Agilent 600 MHz NMR system

Sample Workflow

Agilent NMR systems remove the learning curve

The traditional NMR workflow:

- 1. Insert the sample
- 2. Load parameters
- 3. Adjust tuning manually
- 4. Adjust lock freq. manually
- 5. Adjust shims manually
- 6. Run test spectra
- 7. Adjust experiment parameters manually
- 8. Collect data
- 9. Input sample information
- 10. Save data
- 11. Process data
- 12. Adjust processing parameters
- 13. Save processing parameters

Operator requires 30 minutes or more for every sample

The VnmrJ workflow:

- 1. Insert the sample
- 2. Select experiments to be collected
- 3. Input sample information
- 4. Submit sample
 - Auto tune
 - Auto shim
 - \circ Auto lock
 - Auto optimization
 - o Auto process
 - o Auto save
 - Auto archive
 - Auto email results

Operator requires 3 minutes for a sample, less for repeat measurements.

VnmrJ

Streamlined Workflows for Sample Submission

to manage your experience

Go to www.spinsights.net

VnmrJ 4.0 – NMRPipe SpecView

Interactive Principal Component Analysis to Characterize Spectral Differences

VnmrJ 4.0

Industry-Leading DOSY Solutions

VnmrJ 4.0 allows routine users to apply Non-Uniform Sampling (NUS) to most any experiment, for sharper spectra with less measurement time

Agilent Technologies

Dave Russell

NMR as a structural tool

Comparison of an SGLT-2 inhibitor and metabolite

Sample Courtesy: Mark Grillo, Amgen

Automated Solvent Suppression

100% water

Microsample Cold Probe: Excellent Mass Sensitivity for Small Molecule NMR

Band-selective Homodecoupled 2D NOESY (bashdNOESY)

Band-selective Homodecoupled 2D NOESY (bashdNOESY)

Microsomal Incubation of Bupropion

Detecting drug in the protein precipitated sample

Sample Courtesy: Ron Aoyama, Rigel

Microsomal Incubation of Bupropion

Detecting drug in the protein precipitated sample

ADME Webinar 2013

Microsomal Incubation of Bupropion

Detecting drug in the protein precipitated sample

Quantitative NMR Spectroscopy - qNMR

Why is NMR a valuable tool for quantitation?

In contrast to almost all other common quantitative techniques, the NMR experiment is fundamentally quantitative. The response factor for any given nuclei is 1.000, regardless of molecular structure or environment.

Historically, the limiting factor for using NMR for routine quantitative studies has been poor reproducibility in the console hardware. Compensating for this required an internal standard or injection of an artificial reference signal. Both of these solutions are suboptimal.

Quantitation of Tetracycline in D_2O HO, CH₃, H₃C, CH₃ \downarrow , OH \downarrow , OH

LOQ of ~5 μ M or 2 nanomoles

Current NMR Analysis Workflow

FT & phase correct

There are various drawbacks to interpretation based on a processed spectrum.

Significant issues can be introduced by the Fourier Transform, including baseline issues and phase distortions.

Manual processing. Manual data reduction. Manual everything!

CRAFT – Deconstructing a Spectrum

Once data have been captured in the spreadsheet, analysis is essentially complete.

Most users want to see how well the data reduction step worked. CRAFT includes a complete set of tools to allow visual inspection of the results.

Spectra of Tetracycline in Plasma

Tetracycline is known to bind to endogenous proteins in plasma. NMR can be used to directly measure the concentration of free tetracycline by simple integration of a drug peak.

Deconvolution of Tetracycline Resonances

Free Concentration = 6.5 μM

Tetracycline is known to bind to endogenous proteins in plasma. NMR can be used to directly measure the concentration of free tetracycline by simple integration of a drug signal.

Summary

- Agilent NMR systems are easy to use. By providing an array of automated tools and utilities, VnmrJ allows you to focus on learning about your samples rather than learning how to use the software.
- Sophisticated NMR techniques, such as band-selective experiments, are available to any researcher. A powerful and complete library of over 360 experiments can be used by anyone with just a few mouse clicks.
- You can use NMR to measure the absolute concentration of practically any sample. Agilent's NMR systems provide the stability and linearity needed to measure absolute concentration without the need for internal standards or artificial reference signals.
- CRAFT provides automated Spectrum-to-Spreadsheet deconvolution. Deconvolution of NMR spectra has reached reached the 21st century.

Thank you!

Agilent Technologies

info@bioanalysis-zone.com

Look for more webinars brought to you from Bioanalysis and a recording on today's event on BioanalysisZone

www.bioanalysis-zone.com/webinars