The Secrets of Rapid HPLC Method Development

Choosing Columns for Rapid Method Development and Short Analysis Times

Rapid Analysis Is More Than Run Time

- It is developing a method to meet a goal and developing and validating it quickly.
- The final method should minimize analysis time for the greatest sample throughput.
- It must be reproducible and robust.

Four Critical Aspects of Rapid Method Development and Analysis

- Rapid Sample Preparation minimum steps for maximum effectiveness, use updated tools (combination filters) and multisample preparation equipment (SPE 96-well plates)
- Choose best bonded phases for high resolution selecting from typical C18 and C8 bonded phases or those targeted to special sample types
- Choose the best column configuration for minimum analysis time with high efficiency and resolution – best column length, internal diameter, particle size
- Using your HPLC instrument to further reduce analysis time and increase sample throughput – optimizing the HPLC and using new features effectively

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Bonded Phase Choice Drives Resolution

- Changing selectivity (α) influences resolution the most
- Bonded phase is the column choice that controls selectivity

$$Rs = \frac{\frac{1}{2}}{\alpha} \left[\frac{(\alpha - 1)}{\alpha} \right] \left(\frac{k}{1 + k} \right)$$

 α = selectivity – increase by changing bonded phase and mobile phase

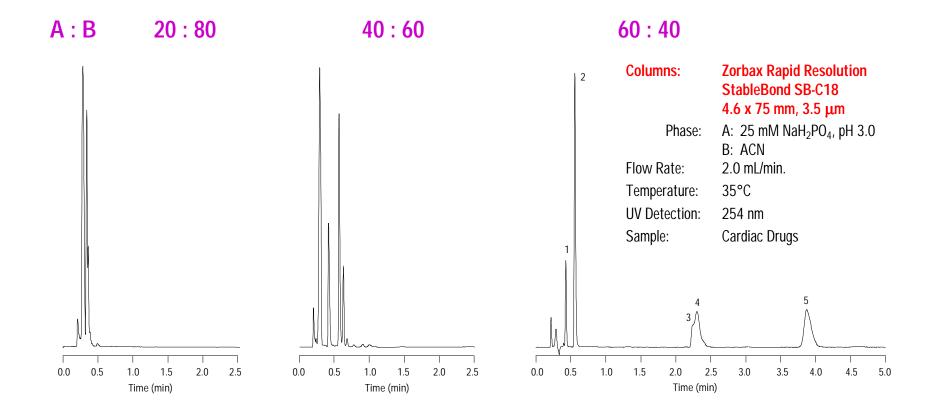
= retention – increase by changing bonded phase and mobile phase does not improve Rs above $k \approx 10$

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

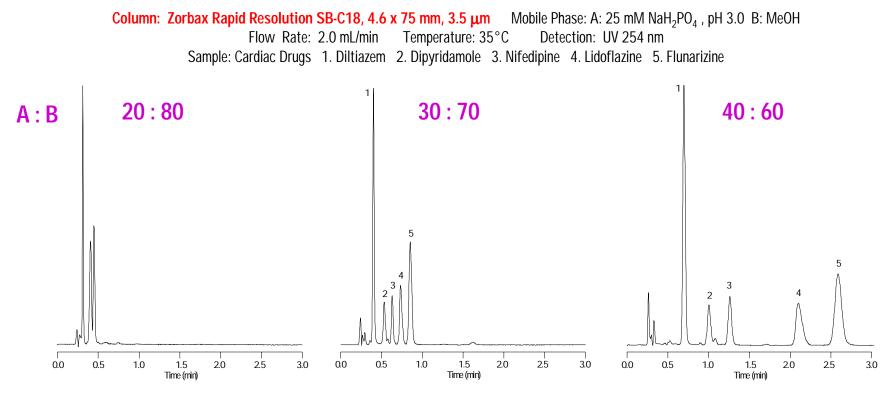
Selecting a Bonded Phase

- Choose columns known to have long lifetimes at operating mobile phase pH.
- Choose bonded phases on high purity, low acidity silica for best peak shape.
- Select a C18 or C8 bonded phase first for good retention and resolution with typical acidic, basic and neutral samples.
- If sample is expected to be difficult (i.e. very polar, difficult to retain, very basic) then select targeted bonded phases available for these types of samples.


Rapid Method Development Scheme – Low pH

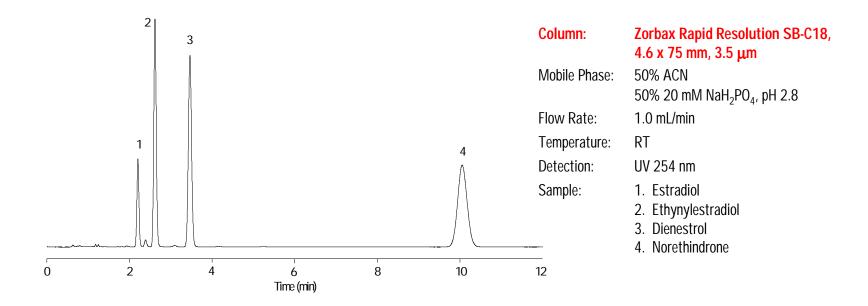
- Start at low pH for best peak shape, retention and long-term reproducibility
 - Select starting conditions
 - StableBond C18 or C8 for maximum lifetime Rapid Resolution columns
 - pH 1 3 with 20 50 mM buffer for best peak shape
 - Acetonitrile or methanol start high to scout
 - Adjust organic for maximum resolution and retention
 - Change organic if resolution not achieved MeOH or ACN
 - Change bonded phase if resolution not achieved SB-CN, SB-Phenyl, SB-C3
- Use elevated temperature to reduce analysis time further

Agilent Technologies


Rapid Method Development Scouting Chromatograms on StableBond-C18 Rapid Resolution Columns

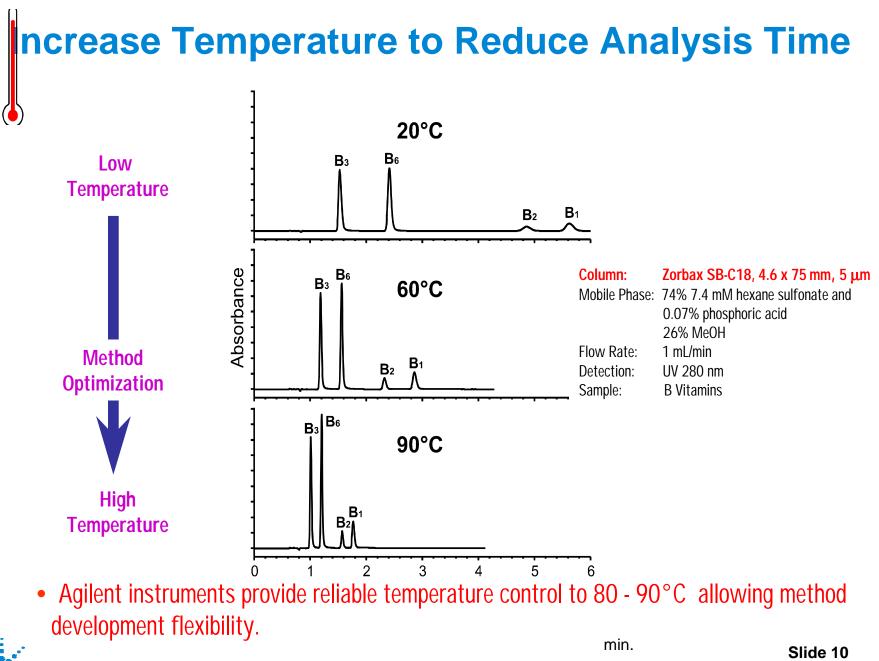
Dial 1-904-779-4740 for e-Seminar Audio

Rapid Method Development Scouting Chromatograms Change Organic Modifier


• Changing organic modifier can alter selectivity and improve peak shape.

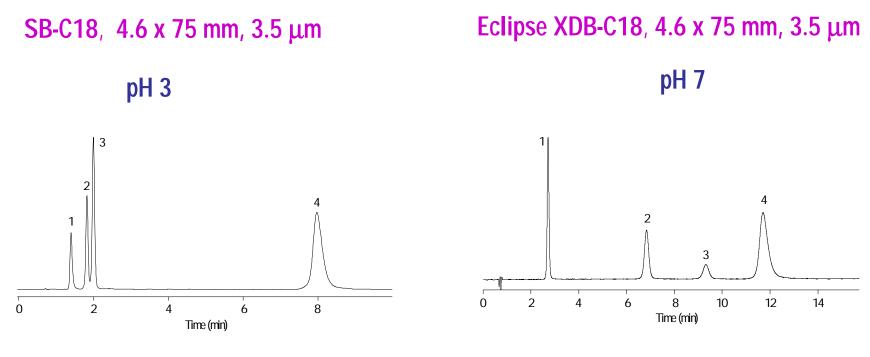
Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio


Rapid Method Development Process Optimizes Separation on StableBond-C18 at Low pH

 A Rapid Resolution SB-C18 column at low pH was used to develop this thorough and rapid analysis of steroids and impurities following the rapid method development process.

Agilent Technologies


Dial 1-904-779-4740 for e-Seminar Audio

Rapid Method Development Scheme – Mid pH

- Try pH 7 (pH 6 9) with Eclipse XDB-C18 or C8 and follow same process, selecting Eclipse XDB-Phenyl as alternate bonded phase
- Use temperature to reduce analysis time further

Eclipse XDB-C18 is Bonded Phase Choice for High Resolution at Mid pH

Mobile Phase: 20% Methanol: 80% 20 mM phosphate buffer + (10 mM TEA @ pH 7)Flow Rate: 1.0 mL/minTemperature: RTDetection: UV 254 nmSample: 1. Nizatidine 2. Famotidine 3. Cimetidine 4. Pirenzipine

• This sample is only resolved at mid pH on Eclipse XDB-C18 following rapid method development process.

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Break Number 1

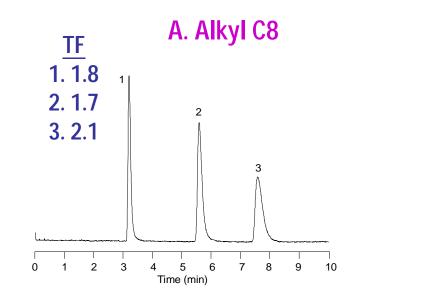
For Questions and Answers Press *1 on Your Phone to Ask a Question

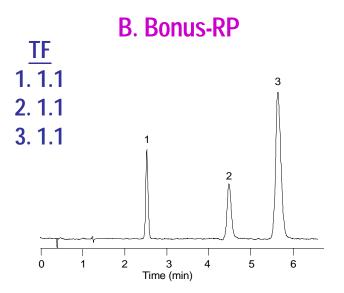
Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Choose Special Bonded Phases for Difficult Samples

- Sample 1 Highly basic compounds
- May exhibit poor peak shape
- May be difficult to retain
- Column choice 1 Bonus-RP for better peak shape
- Column choice 2 Extend-C18 at high pH for better retention and peak shape

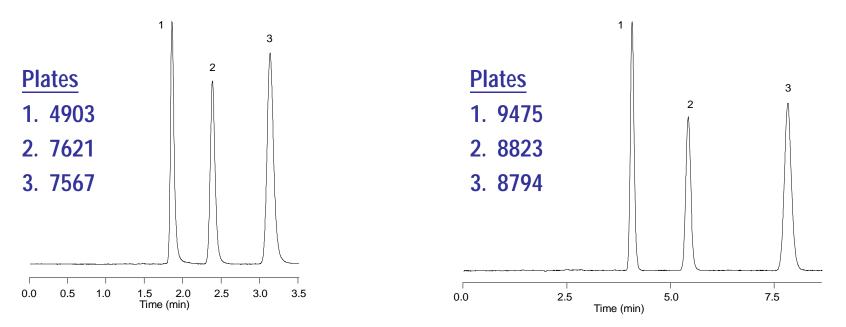

- Sample 2 Highly polar compounds
- May be difficult to retain
- May require high aqueous mobile phases
- Column choice 1 SB-Aq for better retention with high aqueous mobile phases
- Column choice 2 Bonus-RP for use with high aqueous mobile phases



Agilent Technologies

Sample 1: Highly Basic Compounds Select Bonus-RP for Improved Peak Shape

Column: $4.6 \times 150 \text{ mm}$, $5 \mu \text{m}$ Mobile Phase: A: 75% 25 mM NH₄Ac, pH 5.5 : 25% ACN B: 80% 25 mM NH₄Ac, pH 5.5 : 20% ACN Flow Rate: 1.5 mL/min Detection: UV 254 nm Sample: 1. Doxylamine 2. Chlorpheniramine 3. Triprolidine

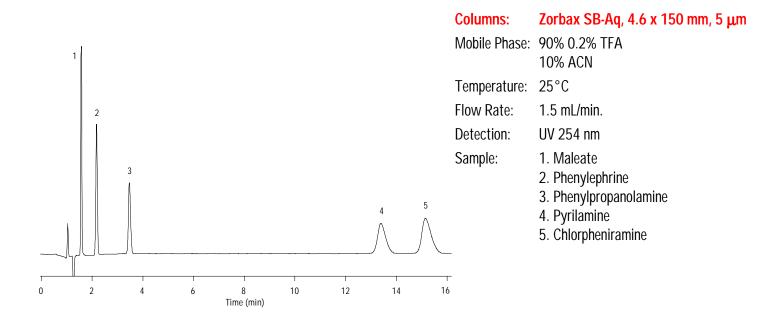

Dial 1- 904-779-4740 for e-Seminar Audio

Sample 1: Highly Basic Compounds Extend-C18 Improves Retention and Efficiency of Procainamides at High pH

Mobile Phase: See BelowFlow Rate: 1.0 mL/minDetection: UV 254 nmTemperature: RTSample: 1. Procainamide pKa 9.22. N-acetylprocainamide3. N-propionylprocainamide

50% 25 mM Na₂HPO₄, pH 7.0 : 50% MeOH

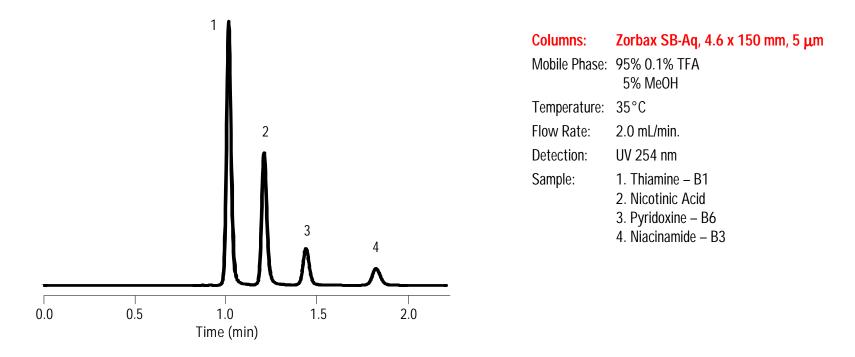
50% 20 mM TEA, pH 11: 50% MeOH


High efficiency improves resolution and column lifetime and the increase in retention
Slide 16
Dial 1- 904-779-4740 for e-Seminar Audio

Sample 2: Highly Polar Compounds Select New ZORBAX SB-Aq Columns for Method Development in High Aqueous Mobile Phases

- Good retention for polar compounds in high aqueous mobile phases
- Reproducible retention without "phase collapse"
- Different selectivity vs. conventional C18 columns
- Highly, stable at low pH and high temperature (up to 80°C)

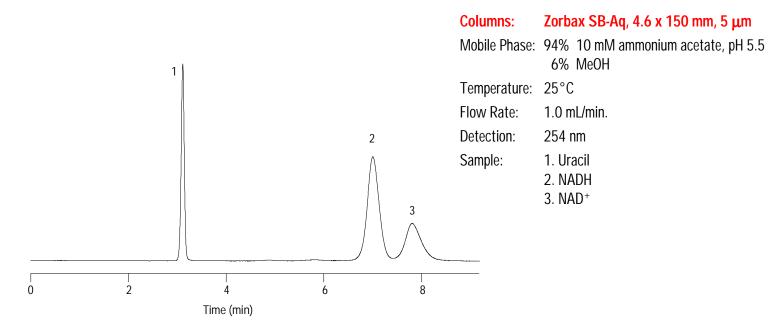
Sample 2: Highly Polar Compounds ZORBAX SB-Aq Provides Good Retention of Polar Compounds


- These small polar compounds are difficult to retain on most columns.
- The SB-Aq provides excellent retention with a 90% aqueous mobile phase.

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Sample 2: Highly Polar Compounds ZORBAX SB-Aq Provides Good Retention of Water Soluble Vitamins without Ion Pairing


- The SB-Aq column provides good retention of these polar compounds without ion pairing.
- The result is a simpler method without the reproducibility problems associated with ion pairing.

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Sample 2: Highly Polar Compounds ZORBAX SB-Aq Provides Good Retention of NADH/NAD⁺ with LC/MS Compatible Mobile Phase

- These coenzymes are difficult to retain and analyze by LC/MS.
- The SB-Aq provides baseline resolution without ion pairing.

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

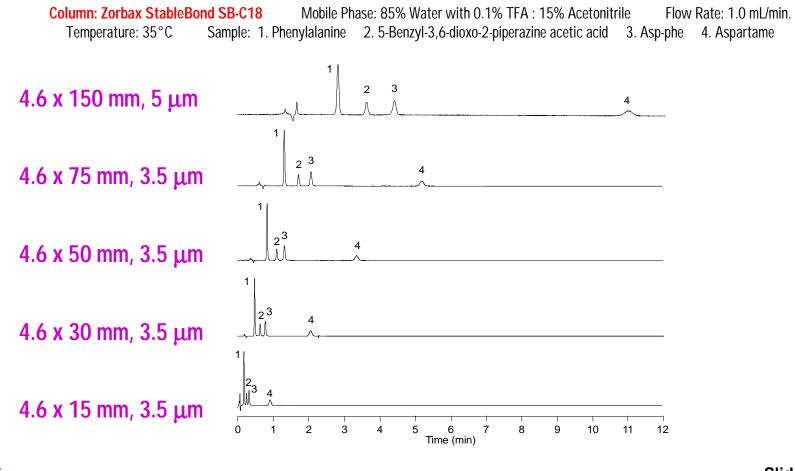
Rapid Resolution Columns Reduce Method Development and Analysis Time

- Rapid Resolution columns (3.5 μm) are available in many configurations
 - Available in analytical, narrow bore, microbore, and capillary internal diameters for compatibility with any sample size.
 - Semi-preparative and preparative columns use 5 μm particles.
- Rapid Resolution columns reduce isocratic and gradient run times with:
 - Shorter column lengths
 - Higher flow rates
 - Optimized HPLC instrument

Agilent Technologies

Choose Column Configuration for Application

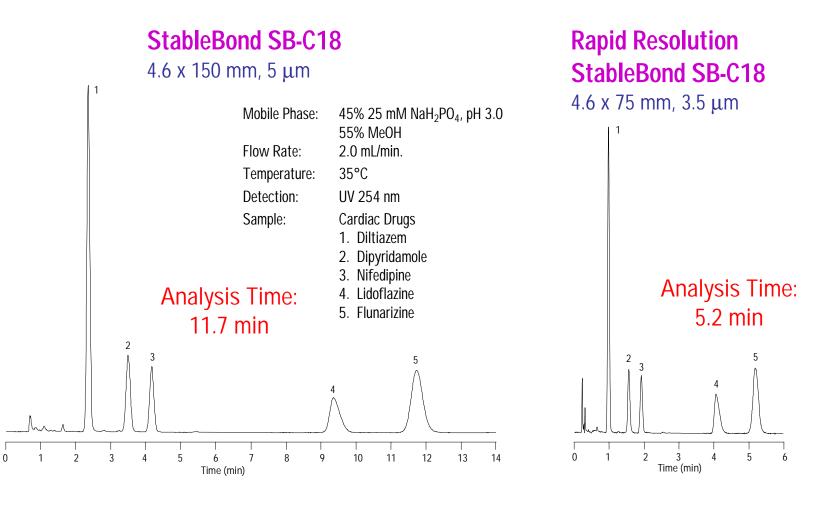
Column Type	I.D. (mm)	Lengths (mm)	Particie Sizes	Flow Rate Ranges	Applications
Capillary	0.3, 0.5	35 – 250	<mark>(μm)</mark> 3.5, 5	1 – 10 μL/min	Max sensitivity LC/MS Higher
MicroBore	1.0	30 – 150	3.5, 5	30 – 60 μL/min	sensitivity
Narrow Bore Solvent	2.1	15 – 150	3.5, 5	0.1 – 0.3 mL/min 0.3 – 1.0	LC/MS High sensitivity LC/MS
Saver	3.0	150, 250	3.5, 5	mL/min	Analytical
Analytical	4.6	15 – 250	3.5, 5	1 – 4 mL/min	Analytical
Semi-prep	9.4	50 – 250	5	4 – 10 mL/min	Small scale prep (mg)
Preparative	21.2	50 – 250	5, 7	20 – 60 mL/min	Large scale prep



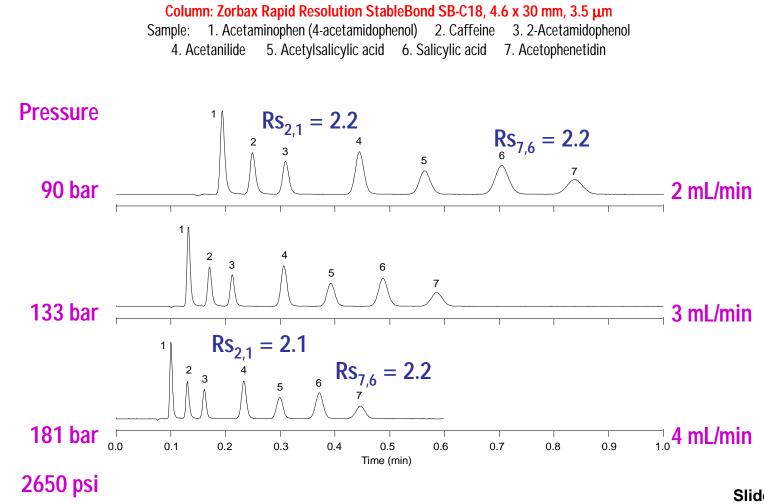
Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

High Resolution with Rapid Resolution Columns


Isocratic Separation of Aspartame

Dial 1-904-779-4740 for e-Seminar Audio


Rapid Resolution Columns Reduce Isocratic Analysis Time by 50% or More

Dial 1-904-779-4740 for e-Seminar Audio

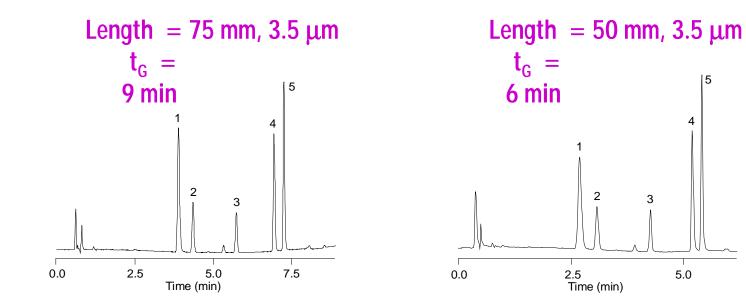
Higher Flow Rates Reduce Analysis Time with Rapid Resolution Columns

Dial 1-904-779-4740 for e-Seminar Audio

Gradient Re-equilibration Times are Minimal on Short Rapid Resolution Columns Column Volume (Vm) and Equilibration Time

Column		Internal	Equilibration Time
Dimension (mm)		Volume (Vm)	at 1.0 mL/min (Vm x 10 x F)
	4.6 x 50	0.5 mL	5 min
4.6 x 30		0.3 mL	3 min
	4.6 x 15	0.15 mL 1.5 min	
	4.6 x 150	1.54 mL	15 min
			at 0.2 mL/min at 1.0 mL/min
	2.1 x 50	0.10 mL	5 min 60 sec
2.1 x 30		0.06 mL	3 min 36 sec
	2.1 x 15	0.03 mL	1.5 min 18 sec

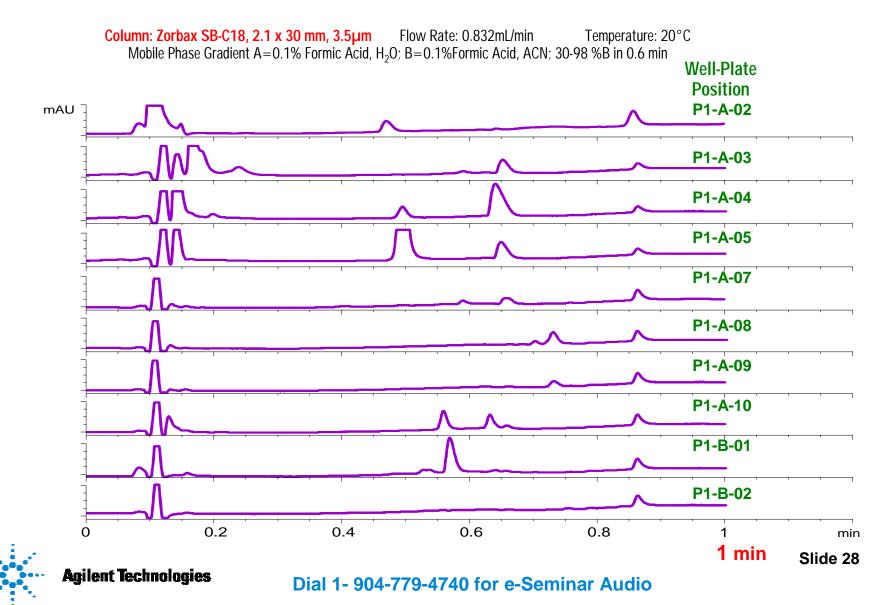
Gradient Analysis Time = Run Time + Equilibration Time (single step return)


Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Short, Rapid Resolution Columns Reduce **Gradient Analysis Time**

Gradient Time α Column Length



Dial 1-904-779-4740 for e-Seminar Audio

Rapid Gradient CombiChem Analysis 1.5 min Injection-to-Injection

Increasing Flow Rate Reduces Gradient Analysis Time Further

Column: Zorbax Eclipse XDB-C8 4.6 x 50 mm, 3.5 µm Gradient: 45-90% B in t_G minutes Mobile Phase: A: 25 mM Na₂HPO₄, pH 3 B: MeOH Sample: Cardiac Drugs 1. Diltiazam 2. Dipyradamole 3. Nifedipine 4. Lidoflazine 5. Flunarizine Flow Rate: 1.0 mL/min Temperature: 35°C If $t_G x F = constant$ 5 5 then the elution pattern is unchanged 4 4 F = 2.0 mL/minF = 3.0 mL/min $t_G = 2 \min$ $t_G = 3 \min$ 2 2 3 0.0 0.5 1.0 2.0 2.5 3.0 3.5 0.0 0.5 2.0 1.5 1.0 1.5 Time (min) Time (min)

Dial 1-904-779-4740 for e-Seminar Audio

Break Time

For Questions and Answers Press *1 on Your Phone to Ask a Question

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

HPLC Instrument Optimization Increases Efficiency and Decreases Method Development and Analysis Time

- Choose the best column configuration for your instrument type and application (i.e. Capillary LC for highest sensitivity or compatibility with LC/MS)
- Instrument optimization can improve efficiency for isocratic and gradient separations
- New instrument features can help you reduce analysis time

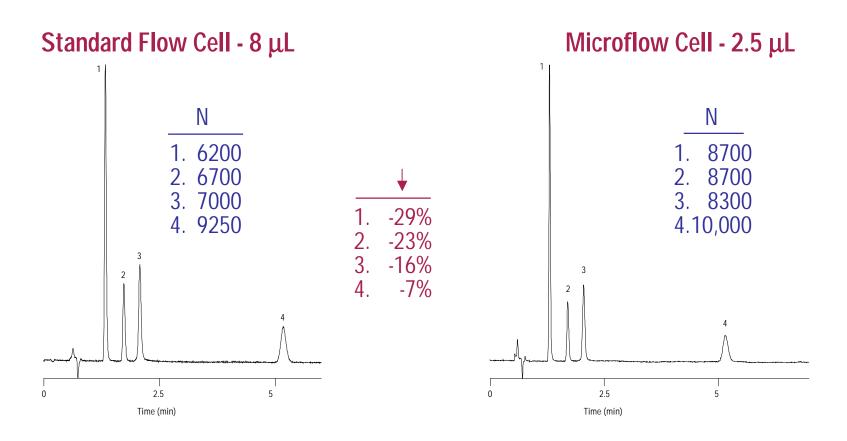
Choose HPLC Instrument for Application

	Agilent 1100 Type	Compatible Columns	Flow Rate Range	A	pplications	Why?
Са	apillary LC	Capillary, MicroBore, Narrow-bore, Solvent Saver, Analytical	1 μL/min –	1. 2.	limited	5 μL dwell volume, best low volume gradient reproducibility
	LC	Narrow-bore, Solvent Saver, Analytical, Semi-prep	binary 0.2 – 10 mL/min* isocratic/quaternar		Analytical MS	Standard analytical more semi-prep than low volume Work at 3- 4mL/min
F	Prep LC	Semi-prep, Prep	y 1 - 100 mL/min	1.	Purificatio n	Preparative and CombiChem prep

* Optimum range Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Optimizing Results with Rapid Resolution Columns Isocratic Separations

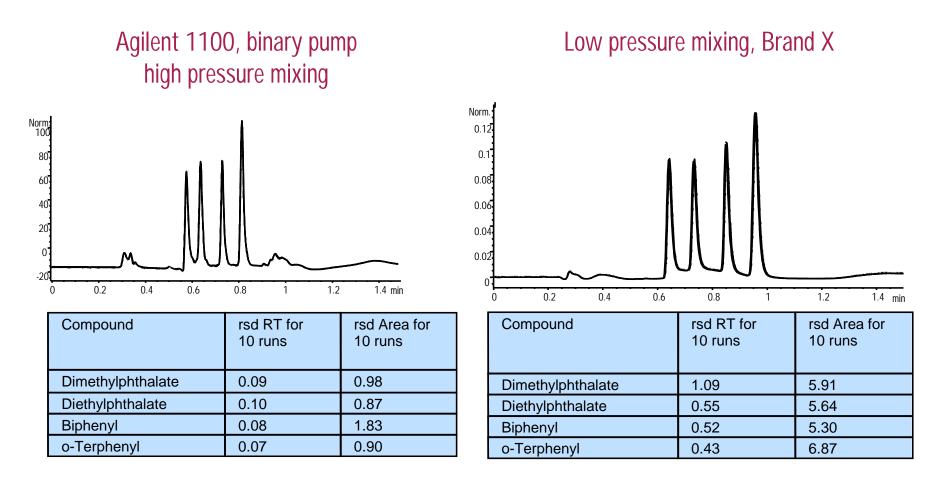

- Minimize extra column volume to minimize band broadening
 - Keep the injection volume small (< 5 μ L)
 - Use semi-micro or micro detector cells (5 μ L or less)
 - Use 0.12 mm i.d. tubing (0.005")
- Prepare the sample in an injection solvent with the same or weaker solvent strength than the mobile phase
- Overlap injections
- Select the Agilent 1100 Capillary HPLC for capillary and microbore columns
- Select correct detector response time for rapidly eluting peaks

Agilent Technologies

Effect of Detector Cell Volume on Peak Width 4.6 x 75 mm, 3.5 μm

Column: Zorbax StableBond SB-C18Mobile Phase: 85% H20 with 0.1% TFA : 15% ACNFlow Rate: 1.0 mL/minTemperature: 35°CSample: 1. Phenylalanine2. 5-benzyl-3,6-dioxo-2-piperazine acetic acid3. Asp-phe4. Aspartame

Dial 1-904-779-4740 for e-Seminar Audio

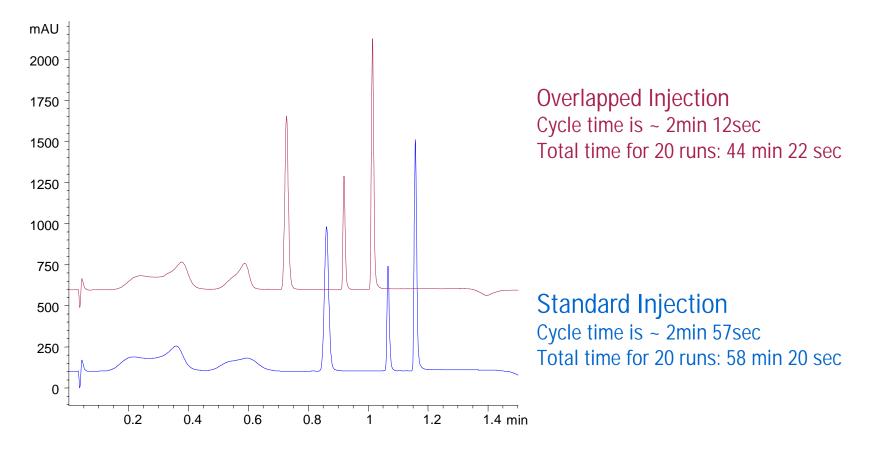

Optimizing Results with Rapid Resolution Columns Gradient Separations

- Minimize dwell volume includes mixing volume and injector volume
 - Use high pressure mixing and reduce mixer volume
 - Run autosampler in bypass reduce dwell volume by 300 μL
- Minimize extra column volume
- Overlap injections
- Select correct detector response time for rapidly eluting peaks
- Select Agilent 1100 Capillary HPLC with 5 μL dwell volume for capillary and microbore columns

Agilent Technologies

Reproducible, Fast Gradient Analysis with High Pressure Mixing

Column: Zorbax StableBond C18, 2.1 x 50 mm

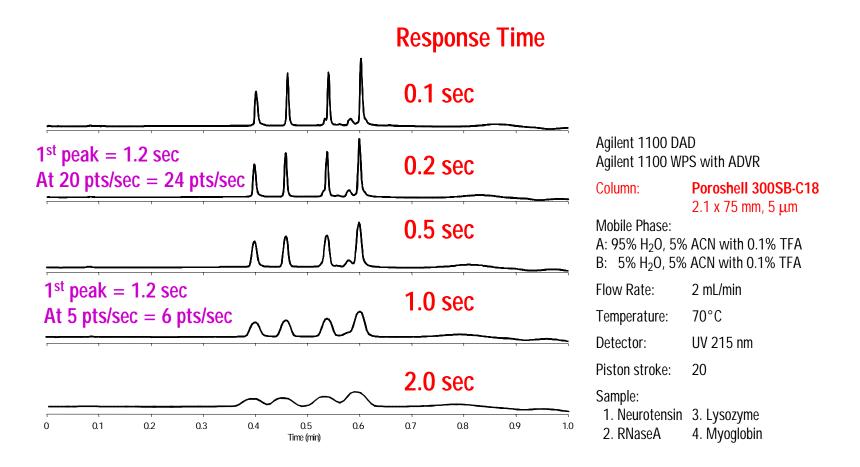


Dial 1-904-779-4740 for e-Seminar Audio

Reduce Gradient Analysis Time and Dwell Volume with Bypass of the Sample Loop

Column: Zorbax SB-C18, 4.6 x 30 mm, 3.5µm Flow Rate: 0.832 mL/min Temperature: 20°C Mobile Phase Gradient: A= 0.1% Formic Acid, H₂O; B = 0.1% Formic Acid, ACN; 30-98 %B in 0.6 min mAU Agilent 1100 WPS 200 Auto Bypass By-Pass Off 100 0 Agilent 1100 WPS mAU Auto Bypass By-Pass On 200 100 0 0.2 0.4 0.6 0.8 1.2 0 1 min Time Savings Slide 37 Agilent Technologies Dial 1-904-779-4740 for e-Seminar Audio

Overlapped Injection Reduces Analysis Time


 Overlapped injections – sample is drawn up during previous injection – reduce gradient and isocratic run times.

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Effect of Detector Response Time on Ultra-Fast Gradient Analyses

You may have to adjust the response rate of your detector for rapid peak detection.

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

Summary

- C18 and C8 bonded phases are the best for initial rapid method development with typical sample types
- Choosing the most sample appropriate bonded phase and using special, targeted bonded phases, such as SB-Aq for polar, difficult to retain compounds can decrease method development time
- Rapid Resolution columns are needed to reduce method development time
- Rapid Resolution columns reduce both gradient and isocratic analysis time and permit high throughput rapid analysis
- Rapid Resolution columns can work effectively with your HPLC
- HPLC instruments may have additional capabilities to speed up method development and reduce analysis time

Agilent Technologies

Break Time

For Questions and Answers Press *1 on Your Phone to Ask a Question

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio

HPLC Column Technical Support

800-227-9770 (phone: US & Canada)*

302-993-5304 (phone)*

* Select option 4, then option 2.

916-608-1964 (fax)

www.agilent.com/chem

Agilent Technologies

Dial 1-904-779-4740 for e-Seminar Audio