

使用 Agilent 8900 ICP-MS/MS 分析高纯度铜中的超痕量杂质

使用可选的"m 透镜"测定高基质样品中低 ppt 级的 碱金属

前言

铜 (Cu)、铝 (Al)、钽 (Ta)、钨 (W) 和铪 (Hf) 等金属对于半导体器件的制造至关重 要。金属溅射靶材用于通过化学气相沉积 (CVD) 或物理气相沉积 (PVD) 等薄膜沉积 技术形成导电或绝缘(介电)层。导电金属(最初是 Al,现在通常用 Cu)用作布线 层内的互连件和层间的"通孔"。复杂的大规模集成电路 (IC) 微处理器芯片可能包含 数十层互连的"导线",总长度可达 100 km 左右 (1, 2)。为确保最终设备的高性能 和高产率,这些组件需要由纯度极高的金属制成。

半导体制造商根据应用不同,可能需要采用 5N (纯度"5 个 9",99.999%)至 9N (纯度 99.9999999%)甚至更高等级的高纯度电子级金属。6N 金属 (纯度 99.9999%)总共仅包含 1 mg/kg (ppm)的目标杂质,因此,每种单独的杂质元素在 固体金属中的含量通常低于 0.01 ppm 或低于 0.005 ppm。

作者

Naoki Sugiyama 安捷伦科技公司,日本 通常使用辉光放电质谱 (GD-MS) 测定高纯度金属中的痕量污 染物。然而,GD-MS 非常昂贵,并且需要使用包含目标痕量 元素的固体金属校准标样。GD-MS 的数据采集速度相对较 慢,导致样品通量较低(每个样品需要大约 10 分钟或更长时 间),使用低温冷却离子源时通常用时更长。作为分析对象的 固体样品与液体消解物相比,在无人值守分析中样品的更换显 得更加棘手。

ICP-MS 广泛用于半导体材料的质量控制,但是在存在高基质 的情况下,难以测量某些超痕量水平的元素。自 20 世纪 90 年代以来,使用"冷"或低能等离子体运行的 ICP-MS 成为一 种强大的工具,被广泛用于分析高纯度化学品和材料。冷等离 子体可抑制基于氩气的高强度干扰物质(如 Ar⁺和 ArO⁺)的形 成,实现对低浓度 ⁴⁰Ca 和 ⁵⁶Fe 的分析。冷等离子体条件还有 利于分析碱金属元素,相对于热等离子体条件,可提供更低的 背景等效浓度 (BEC)。低温等离子体减少了来自接口锥和离子 透镜的痕量易电离元素 (EIE) 的二次电离,从而为这些元素提 供较低的背景信号。但是冷等离子体并非普遍适用,因为低功 率等离子体的能量也较低,导致其分解样品基质的能力较差。 对高基质水平较差的耐受性,使其在分析高基质、高纯度样品 (如电子级金属) 时尤为棘手。

本应用简报介绍了一种使用串联四极杆 ICP-MS (ICP-MS/MS) 测量高纯度铜中超痕量杂质的新方法。针对 Agilent 8900 ICP-MS/MS 开发出一种可选的离子透镜(称为"m 透镜"), 从而能够在耐受基质的高功率等离子体条件下对超低浓度的碱 金属进行测量。m 透镜具有优化的几何结构,可最大程度减 小沉积在 ICP-MS 接口组件上的 EIE 背景信号。

实验部分

样品前处理

所有样品和标样均采用购自日本神奈川县的 Tama Chemicals Co. Ltd 的 5% 半导体级 TAMAPURE AA-100 硝酸 (HNO₃) 配 制。在 PFA 样品瓶中配制并分析溶液,该样品瓶在使用前经 稀 HCl 和 HNO₃ 清洗以及超纯水 (UPW) 冲洗。 配制 0.1% 铜 (Cu) 溶液用于分析。在稀 HNO₃ 中对 9N 高纯铜 样品进行清洗,并用 UPW 冲洗,然后称取约 0.05 g,将其溶 于 5 mL 50% HNO₃ (1:1 浓 HNO₃:UPW)中。用 UPW 将溶液 定容至刻度 (50 mL),使总稀释倍数达到 1000 倍,且基质含量 为 0.1%。8900 ICP-MS/MS 能够耐受百分比级的溶解固体,但 是更高倍的稀释可允许使用非基质匹配校准。这样就无需使用 包含所有目标元素的有证金属标准品。8900 ICP-MS/MS 的检 测限极低(大多数元素为亚 ppt 级),即使在样品稀释倍数较 高的情况下也能实现超痕量分析。

1000 倍的稀释倍数简化了将消解溶液中的实测浓度(单位为 ng/L, ppt)转换为原固体中的浓度(单位为 µg/kg, ppb)的 过程。

49 种元素的校准标样由几种混合的多元素标准储备液 (SPEX CertiPrep, NJ, USA) 制得。为最大程度减小由物理样品传输和 雾化效应引起的信号抑制,对校准标样与 Cu 样品消解物的 HNO₃ 浓度 (5%) 进行基质匹配。

在所有样品和标样中加入三种内标 (ISTD) 元素 Be、Sc 和 In 的混合物,其加标浓度分别为 5.0 ppb、0.5 ppb 和 0.5 ppb。 添加 ISTD 以补偿标样(无 Cu)和 0.1% Cu 溶液之间的基质 差异,并校正任何长期信号漂移。

仪器

所有测量均采用半导体配置的 Agilent 8900 ICP-MS/MS。标准 PFA 雾化器在自吸模式下运行,连接至标准石英雾化室和带有 2.5 mm 内径中心管的石英炬管。8900 ICP-MS/MS 配备标准 Pt 尖采样锥、可选的 m 透镜(部件号 G3666-67500)以及可选的 用于 m 透镜的 Pt 尖、Ni 基截取锥(部件号 G3666-67501)。 用于 m 透镜的截取锥还需要采用非标准型截取锥基座(部件 号 G3666-60401)。

调谐和方法

使用热等离子体条件 (1% CeO⁺/Ce⁺) 确保对高浓度 Cu 基质具 有良好的耐受性。利用单碰撞/反应池 (CRC) 调谐模式测量 Cu 样品中的所有 49 种分析物元素。采用氧气 (O₂) 和氢气 (H₂) 混 合物作为反应池气体,以使用 MS/MS 原位质量和质量转移 模式的组合去除干扰物质。操作条件汇总于表 1,采集参数如 表 2 所示。

表 1. ICP-MS/MS 操作条件

设置
1550
8.0
0.70
0.46
0.0
-70
-60
8.0
$O_2 = 0.2$; $H_2 = 7.0$
-10
-10
+2.0

表 2. 采集参数

元素	Q1/Q2	主要干扰物质	扫描方法	测定的离子	积分时间 (s)	ISTD
Li	7/7		原位质量	Li ⁺	0.5	Be
В	11/11		原位质量	B⁺	2.0	Be
Na	23/23		原位质量	Na⁺	0.5	Sc
Mg	24/24		原位质量	Mg⁺	0.5	Sc
AI	27/27		原位质量	Al⁺	0.3	Sc
Si	28/28	N ₂ ⁺ , CO ⁺	原位质量	Si⁺	0.5	Sc
Р	31/47	NOH ⁺ , Cu ⁺⁺	质量转移	P0⁺	2.0	Be
S	32/48	02 ⁺ , Cu ⁺⁺	质量转移	S0⁺	2.0	Be
к	39/39	ArH⁺	原位质量	K⁺	0.5	Be
Са	40/40	Ar ⁺	原位质量	Ca⁺	0.3	Sc
ті	48/48	S0⁺	原位质量	Ti⁺	0.5	Sc
V	51/51	(CIO ⁺)	原位质量	V*	0.3	Sc
Cr	52/52	ArC ⁺	原位质量	Cr ⁺	0.3	Sc
Mn	55/55	ArNH⁺	原位质量	Mn⁺	0.3	Sc
Fe	56/56	ArO ⁺	原位质量	Fe⁺	0.3	Sc
Со	59/59		原位质量	Co ⁺	0.3	Sc
Ni	60/60		原位质量	Ni ⁺	0.5	Sc
Zn	68/68	ArNN⁺, CuHHH⁺	原位质量	Zn⁺	2.0	Sc
Ga	71/71		原位质量	Ga⁺	0.5	In
Ge	72/72	ArAr ⁺	原位质量	Ge⁺	0.5	In
As	75/91	(ArCl⁺)	质量转移	As0 ⁺	1.0	In

表2 (续).采集参数

元素	Q1/Q2	主要 干扰物质	扫描方法	测定的 离子	积分时间 (s)	ISTD
Se	78/78	ArAr⁺	原位质量	Se⁺	3.0	In
Rb	85/85		原位质量	Rb⁺	0.3	In
Sr	88/88		原位质量	Sr⁺	0.5	In
Zr	90/106		质量转移	Zr0 ⁺	0.5	In
Nb	93/125	CuNO⁺	质量转移	Nb00⁺	0.3	In
Мо	95/127	CuO0⁺	质量转移	Mo00 ⁺	0.5	In
Ru	99/99	ArCu⁺	原位质量	Ru⁺	0.5	In
Rh	103/103	ArCu⁺	原位质量	Rh⁺	0.3	In
Pd	105/105	ArCu⁺	原位质量	Pd⁺	0.5	In
Ag	107/107		原位质量	Ag⁺	0.3	In
Cd	111/111		原位质量	Cd^{\star}	1.0	In
Sn	118/118		原位质量	Sn⁺	0.5	In
Sb	121/121		原位质量	Sb⁺	0.5	In
Те	125/125		原位质量	Te⁺	3.0	In
Cs	133/133		原位质量	Cs⁺	0.5	In
Ва	137/137		原位质量	Ba⁺	0.5	In
Hf	178/194		质量转移	HfO⁺	0.5	In
Та	181/213		质量转移	TaO0⁺	0.5	In
w	182/214		质量转移	WO0 ⁺	0.5	In
Re	185/185		原位质量	Re⁺	0.5	In
Ir	193/193		原位质量	lr*	0.5	In
Pt	195/195		原位质量	Pt⁺	0.5	In
Au	197/197		原位质量	Au⁺	0.5	In
ТΙ	205/205		原位质量	TI⁺	0.3	In
Pb	208/208		原位质量	Pb⁺	0.3	In
Ві	209/209		原位质量	Bi⁺	0.3	In
Th	232/248		质量转移	ThO⁺	0.3	In
U	238/270		质量转移	U00⁺	0.3	In

结果与讨论

5% HNO3 空白的 BEC 和 DL

由各种分析物的校准曲线获得 5% HNO₃ 的背景等效浓度 (BEC)。三种碱金属元素(Li、Na 和 K)的校准曲线如图 1 所 示。这三种元素的 BEC 分别为 0.1 ppt、6.1 ppt 和 5.4 ppt,表 明使用 m 透镜获得了极低的背景信号。图 1 中还显示了 Si、 P 和 S 的校准曲线。这些挑战性元素的 BEC 分别为 231 ppt、 7.2 ppt 和 84 ppt。P 和 S 具有相对较高的第一电离势 (IP),因 此在冷等离子体条件下电离效果不佳。在本研究中使用热等 离子体条件,这些电离效果不佳的元素以及其他元素(如 B、 Zn、As、Cd、Ir、Pt 和 Au)均在低 ppt 级浓度下得到测量。 5% HNO₃ 空白中所有 49 种元素的 BEC 和 3σ DL 如图 2 所示。 溶液中大多数元素的 BEC 均低于 1 ng/L (ppt)。考虑到 1000 倍 的稀释倍数,该 BEC 值相当于固体 Cu 中的含量低于 1 μg/kg (ppb)。这一灵敏度水平表明,8900 ICP-MS/MS 方法适用于 对高纯度 Cu 中的这些超痕量杂质元素进行分析。在所用的 热等离子体条件下,碱金属元素 Li、Na 和 K 还获得了低 ppt 级 BEC。对于最具挑战性的元素,获得了数十至数百级别的 BEC: S (84 ppt) 和 Si (231 ppt)。

图 1. 易电离元素 Li、Na 和 K 以及挑战性元素 Si、P 和 S 的校准曲线

图 2.5% HNO3 空白中 49 种元素的 BEC 和 3σ DL。无法计算 Rb、Pd、Sb、Re、 Ir 和 Bi 的 BEC 和 DL,因为在空白的所有重复测定中,实测响应均为零

测定 0.1% 9N 高纯铜中的杂质

利用 8900 ICP-MS/MS 方法测定 0.1% 高纯铜溶液中 49 种元 素的浓度。采用 ISTD 校正法校正合成标样(不含 Cu 基质) 和 0.1% Cu 样品之间的信号差异。非基质样品和 Cu 基质样品 之间的信号差异均小于 30%,证明了所用热等离子体条件的 稳定性。 在消解物中测得的所有元素(除 Si、S 和 Te 以外)的浓度均 低于 10 ppt,如图 3 所示。测得的大多数元素的浓度为 1 ppt 或更低,相当于固体金属中的浓度低于 1 μ g/kg (ppb)。O₂ + H₂ 混合反应池气体消除了 ArCu⁺ 对 Ru⁺、Rh⁺ 和 Pd⁺ 的显著质谱 干扰(见表 2)。去除干扰物质后,能够测定 ppt 或亚 ppt 级 (在固体金属中相当于 ppb 或亚 ppb 级)的这些元素。

图 3. 0.1% 9N Cu 样品中 49 种元素的实测浓度(误差线 = 三个样品的标准偏差)。溶液中以 ng/L (ppt) 显示的值相当于原固体金属中的 μg/kg (ppb) 值。报告的 Re 浓度为 0.000 ppt。Rh、Pd、Ta、Re 和 TI 的 SD 为零

加标回收率

为验证方法,对所有 49 种杂质元素进行加标回收率测试。在 0.1% 9N 铜空白溶液中加入 50 ppt 元素标准品(Si、P 和 S 加标浓度为 200 ppt)。所有 49 种元素的回收率均处于 84%-112% 范围内,且大多数元素处于 90%-110% 范围内,如图 4 所示。

结论

使用 Agilent 8900 ICP-MS/MS 能够快速准确地分析高纯度铜 金属消解物中的超痕量杂质。可选的 m 透镜确保在热等离子 体条件下最大程度减小碱金属元素的背景信号。该方法使用 了 MS/MS 模式与混合反应池气体 $(O_2 + H_2)$,具有以下性能 优势:

- 采用耐受基质的热等离子体条件,大多数杂质(包括碱金属元素)均获得了低 ppt 级的 BEC
- 硫和硅(使用 ICP-MS 最难以测量的元素)获得了数十至数百 ppt 级的低水平 BEC

- · 无需对 Cu 基质进行基质匹配,因为 ISTD 能够校正标样 (在 5% HNO₃ 中)与样品(在 0.1% Cu)的基质差异
- 使用这种快速简单的方法与单一混合反应池气体模式,能
 够对 0.1% 高纯度 Cu 样品中的总共 49 种超低含量元素进行测定

参考文献

- 1. Larry Zhao, All About Interconnects, *Semiconductor Engineering*, 2017, accessed October 2018, <u>https://</u> <u>semiengineering.com/all-about-interconnects/</u>
- 2. Katherine Bourzac, Making Wiring that Doesn't Trip Up Computer Chips, *MIT Technology Review*, 2012, accessed October 2018, <u>https://www.technologyreview.com/</u> <u>s/428466/making-wiring-that-doesnt-trip-up-computer-</u> <u>chips/</u>

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2018 2018 年 11 月 15 日,中国出版 5994-0383ZHCN