

应用 GC/MS/MS 测定超痕量多氯代二 苯并-对-二噁英和多氯代二苯并呋喃

作者

徐驰、高丽荣和郑明辉 中国科学院生态环境研究中心 环境化学与生态毒理学国家 重点实验室 中国北京

王雯雯

安捷伦科技(中国)有限公司 中国北京

摘要

多氯代二苯并-对-二噁英 (PCDD) 和多氯代二苯并呋喃 (PCDF) 为剧毒的持久性有 机污染物 (POPs)。由于在复杂样品中二噁英同类物的含量通常处于超痕量水平, 因此它们的分析具有极大的挑战性。本研究开发了一种气相色谱三重四极杆质谱 (GC/MS/MS) 方法,用于分析 17 种 2,3,7,8-取代 PCDD/Fs 同类物。使用配备新型高 效电子轰击电离源的 Agilent 7010 GC/MS/MS 进行分析,该离子源可实现痕量和超 痕量分析物的高灵敏度检测,并提供可靠结果。

焚烧是环境中二恶英的主要来源之一。因此,分析垃圾焚烧飞灰样品中的二恶英对 于控制二恶英的排放具有重要意义。使用 GC/MS/MS 对浓度为 2.1-32.6 pg (I-TEQ)/g 的 6 个飞灰样品进行了分析。GC/MS/MS 结果与使用 GC/HRMS 获得的结果一致。 通过对鱼组织有证标准物质进行五次进样分析,对该方法进行了验证。对于所有同 类物,GC/MS/MS 分析获得的平均结果均在认证的参考值范围内。所有同类物的相 对标准偏差 (RSD) 均小于 10.0%。因此,该 GC/MS/MS 方法可作为 GC/HRMS 方法 的一种可行且经济的替代选择。

前言

PCDD/Fs 因其毒性和在环境中的持久 性而备受关注^[1]。由于在复杂环境样品 中 PCDD/Fs 同类物的含量通常处于超 痕量水平,因此它们的分析具有挑战 性。GC/MS/MS 采用特异性多反应监测 (MRM) 模式,可生成 PCDD/Fs 的特异性 片段。这种选择性反应可以减少干扰, 提高灵敏度。因此,将气相色谱-串联质 谱联用系统应用于 PCDD/Fs 分析。欧 盟 (EU) 颁布的法规 (709/2014) 规定了 可使用 GC/MS/MS 系统对食品和饲料 中 PCDD 和 PCDF 的含量进行确证性试 验,以满足 EU ML 的要求。这意味着 三重四极杆质谱仪能够提供与 HRMS 系 统类似的性能^[2]。本应用简报介绍了使 用 Agilent 7010 三重四极杆 GC/MS 系 统分析 17 种毒性 PCDD/Fs 的方法的灵 敏度、选择性和精密度。表 1 列出了具 体的化合物,以及指定的毒性当量因子 (TEF)、国际毒性当量因子 (I-TEF) 和世 界卫生组织 TEF (WHO2005-TEF),用于计 算毒性当量 (TEQ)。本应用简报还表明, GC/MS/MS 结果与使用 GC/HRMS 获得 的结果一致,从而为 GC/HRMS 提供了一 种经济可行的替代方法。

实验部分

试剂与标准品

残留级正己烷、二氯甲烷和甲苯购自 J.T. Baker (Phillipsburg, NJ, USA)。EPA 方 法 1613 规定的 2,3,7,8-PCDD/Fs 标准溶 液,包括 EPA-1613 CVS、LCS 和 ISS 的 标准溶液及有证标准物质 WMF-01(参比 鱼组织)由 Wellington Laboratories Inc (Ontario, Canada) 提供。

仪器

在 Agilent 7890B 气相色谱和 Agilent 7010 三重四极杆 GC/MS 系统上进行分析。仪 器条件如表 2 所示。方法采用 MRM 模式 进行数据采集。对于每种目标分析物,采 用了安捷伦食品和饲料分析仪方法的两种 特异性母离子以及两种相应的子离子和碰 撞能量^[4]。表 3 提供了 MRM 离子对的完 整列表。

長1.	PCDD/Fs	的各种毒	性当量因于	ריין (TEF)

PCDD/Fs	I-TEF	WHO ₂₀₀₅ -TEF
2,3,7,8-TCDD	1	1
1,2,3,7,8-PeCDD	0.5	1
1,2,3,4,7,8-HxCDD	0.1	0.1
1,2,3,6,7,8-HxCDD	0.1	0.1
1,2,3,7,8,9-HxCDD	0.1	0.1
1,2,3,4,6,7,8-HpCDD	0.01	0.01
OCDD	0.001	0.0003
2,3,7,8-TCDF	0.1	0.1
1,2,3,7,8-PeCDF	0.05	0.03
2,3,4,7,8-PeCDF	0.5	0.3
1,2,3,4,7,8-HxCDF	0.1	0.1
1,2,3,6,7,8-HxCDF	0.1	0.1
1,2,3,7,8,9-HxCDF	0.1	0.1
2,3,4,6,7,8-HxCDF	0.1	0.1
1,2,3,4,6,7,8-HpCDF	0.01	0.01
1,2,3,4,7,8,9-HpCDF	0.01	0.01
OCDF	0.001	0.0003

表 2. 仪器条件

气相色谱条件			
色谱柱	Agilent J&W DB-5ms UI, 60 m × 0.25 mm, 0.25 μm		
进样量	1μL		
柱温箱程序 升温温度	在 150 °C 下保持 3 min, 以 20 °C/min 的速率升温至 230 °C,保持 18 min 以 5 °C/min 的速率升温至 235 °C,保持 10 min 以 4 °C/min 的速率升温至 320 °C,保持 1 min		
进样模式	不分流,1.5 min 后开启吹扫		
进样口温度	290 °C		
载气	氦气		
流速	1.0 mL/min		
	质谱条件		
运行模式	电子轰击电离 (El),MRM		
电离电压	70 eV		
离子源温度	320 °C		
接口温度	320 °C		
四极杆温度	150 °C		
溶剂延迟	10 min		
MS1 分辨率	Unit		
MS2 分辨率	Unit		
碰撞池气体流速	氮气 1.5 mL/min,氦气 4.0 mL/min		

表 3. PCDD/Fs 的 MS/MS 分析的主要参数

化合物	母离子 (m/z)	子离子 (m/z)	碰撞能量 (eV)
TODE	303.9	240.9	40
TCDF	305.9	242.9	40
	315.9	251.9	40
0 ₁₂ -10DF	317.9	253.9	40
терр	319.9	256.9	26
1000	321.9	258.9	26
	331.9	267.9	26
012-1000	333.9	269.9	26
PACDE	337.9	274.9	40
FEGDE	339.9	276.9	40
	349.9	285.9	40
0 ₁₂ -Fe0DF	351.9	287.9	40
PaCDD	353.9	290.9	26
FECDD	355.9	292.9	26
	365.9	301.9	26
012-FeoDD	367.9	303.9	26
	373.8	310.9	40
HACOF	375.8	312.9	40
	385.8	321.9	40
U12-HXCDF	387.8	323.9	40

化合物	母离子 (m/z)	子离子 (m/z)	碰撞能量 (eV)
	389.8	326.9	26
HXCDD	391.8	328.8	25
	401.8	337.9	26
	403.8	339.9	25
HECDE	407.8	344.8	40
прові	409.8	346.8	40
	419.8	355.8	40
C ₁₂ -hpcDr	421.8	357.8	40
Hacoo	423.8	360.8	24
провв	425.8	362.9	24
	435.8	371.8	24
C ₁₂ -прово	437.8	373.8	24
	441.7	378.8	40
OCDI	443.7	380.8	40
¹³ C -OCDE	455.8	391.8	40
012-0001	453.8	389.8	40
0000	457.7	394.8	24
0000	459.7	396.8	24
¹³ C -OCDD	469.7	405.8	24
012-0000	471.7	407.8	24

样品前处理

在进行仪器分析前,需要对样品进行复杂 的萃取和净化程序。在萃取前,向样品 中加入已知量的 EPA-1613 LCS¹³C₁₂标记 标准品,并平衡 12 小时。然后,使用正 己烷和二氯甲烷 (1:1, V/V) 通过 Soxhlet 或 ASE 法萃取样品。浓缩后,提取物 经三根色谱柱净化:酸化硅胶色谱柱、 酸/碱/AgNO₃/中性多层硅胶色谱柱,以 及活性炭色谱柱。用甲苯洗脱最终提取 物,然后在柔和纯净氮气流下蒸发至适当 体积。为进行回收率定量,在仪器分析前 加入了 EPA-1613 ISS¹³C₁₂标记标准品。 图 1 所示为样品前处理步骤的汇总流 程图。

结果与讨论

二噁英/呋喃异构体的分离

图 2 所示为 17 种 PCDD/Fs 同类物的 MRM 色谱图,分析时间为 58 分钟。该图 展示了 17 种 PCDD/Fs 同类物的出色分 离,并对难以分离的六氯二苯并对二噁英/ 呋喃异构体进行了放大显示。

校准和平均相对响应因子

采用优化的 GC/MS/MS 方法对校准标样溶 液 EPA-1613 CVS (CS1-CS5) 进行了分析 (表 4)。按照 EPA 方法 1613^[5],通过 5 点 校准曲线获得了各种 2,3,7,8-氯代 PCDD/Fs 同类物的相对响应因子 (RRF)。所有同类 物的 RSD 均小于 3.0%,完全符合 EPA 小 于 15% 的要求(表 5)。

图 2.17 种 PCDD/Fs 同类物的 MRM 色谱图

表 4. 校准溶液中各同类物的浓度 (ng/mL)

天然 PCDD/Fs	1613 CS1	1613 CS2	1613 CS3	1613 CS4	1613 CS5
2,3,7,8-TCDF	0.5	2	10	40	200
1,2,3,7,8-PeCDF	2.5	10	50	200	1000
2,3,4,7,8-PeCDF	2.5	10	50	200	1000
1,2,3,4,7,8-HxCDF	2.5	10	50	200	1000
1,2,3,6,7,8-HxCDF	2.5	10	50	200	1000
2,3,4,6,7,8-HxCDF	2.5	10	50	200	1000
1,2,3,7,8,9-HxCDF	2.5	10	50	200	1000
1,2,3,4,6,7,8-HpCDF	2.5	10	50	200	1000
1,2,3,4,7,8,9-HpCDF	2.5	10	50	200	1000
OCDF	5.0	20	100	400	2000
2,3,7,8-TCDD	0.5	2	10	40	200
1,2,3,7,8-PeCDD	2.5	10	50	200	1000
1,2,3,4,7,8-HxCDD	2.5	10	50	200	1000
1,2,3,6,7,8-HxCDD	2.5	10	50	200	1000
1,2,3,7,8,9-HxCDD	2.5	10	50	200	1000
1,2,3,4,6,7,8-HpCDD	2.5	10	50	200	1000
OCDD	5.0	20	100	400	2000

检测限 (LOD)

根据 US EPA 方法,通过对低浓度 PCDD/Fs (稀释 10 倍的 CS1)的标准溶液进行七次 重复分析,确定 PCDD/Fs 的 LOD。获得 的 17 种 PCDD/Fs 同类物的 LOD 范围为 0.008-0.08 pg/μL,表明 GC/MS/MS 方法 具有出色的灵敏度,足以用于 PCDD/Fs 的超痕量分析。分析结果如表 5 所示。 图 3 所示为 17 种 PCDD 和 PCDF 同类物 的 MRM 色谱图(将 CS1 稀释 10 倍,浓 度范围从 0.05 pg/μL 至 0.5 pg/μL)。

表 5. 各同类物校准的平均 RRF 以及相应的 LOD

2,3,7,8-TCDF 1.07 1.07 0.01 1,2,3,7,8-PeCDF 1.03 1.27 0.049 2,3,4,7,8-PeCDF 1.06 1.39 0.039 1,2,3,4,7,8-PeCDF 1.02 1.81 0.04 1,2,3,4,7,8-PeCDF 1.02 1.81 0.04 1,2,3,4,7,8-PeCDF 1.01 1.89 0.04 1,2,3,6,7,8-HxCDF 1.08 1.36 0.04 2,3,4,6,7,8-HxCDF 0.95 1.46 0.04 1,2,3,7,8,9-HxCDF 0.99 1.56 0.04 1,2,3,4,6,7,8-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.07 1.96 0.04 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,7,8-PeCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 1,2,3,4,	化合物名称	平均 RRF	RSD (%)	LOD (pg/µL)
1.2,3,7,8-PeCDF 1.03 1.27 0.049 2,3,4,7,8-PeCDF 1.06 1.39 0.039 1,2,3,4,7,8-HxCDF 1.02 1.81 0.04 1,2,3,4,7,8-HxCDF 1.01 1.89 0.04 2,3,4,6,7,8-HxCDF 1.01 1.89 0.04 2,3,4,6,7,8-HxCDF 1.08 1.36 0.04 1,2,3,7,8,9-HxCDF 0.95 1.46 0.04 1,2,3,4,6,7,8-HxCDF 0.99 1.56 0.04 1,2,3,4,6,7,8-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,7,8-PeCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04	2,3,7,8-TCDF	1.07	1.07	0.01
2,3,4,7,8-PeCDF 1.06 1.39 0.039 1,2,3,4,7,8-HxCDF 1.02 1.81 0.04 1,2,3,6,7,8-HxCDF 1.01 1.89 0.04 2,3,4,6,7,8-HxCDF 1.08 1.36 0.04 2,3,4,6,7,8-HxCDF 1.08 1.36 0.04 1,2,3,7,8,9-HxCDF 0.95 1.46 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,6,7,8-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-PeCDD 1.15 0.86 0.008 1,2,3,7,8-PeCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.98 2.46 0.04 1,2,3,6,7,8-HxCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04	1,2,3,7,8-PeCDF	1.03	1.27	0.049
1.2,3,4,7,8-HxCDF 1.02 1.81 0.04 1,2,3,6,7,8-HxCDF 1.01 1.89 0.04 2,3,4,6,7,8-HxCDF 1.08 1.36 0.04 1,2,3,7,8,9-HxCDF 0.95 1.46 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,7,8,9-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,4,7,8-HxCDD 1.07 1.96 0.04 1,2,3,4,7,8-HxCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04	2,3,4,7,8-PeCDF	1.06	1.39	0.039
1.2,3,6,7,8-HxCDF 1.01 1.89 0.04 2,3,4,6,7,8-HxCDF 1.08 1.36 0.04 1,2,3,7,8,9-HxCDF 0.95 1.46 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,7,8,9-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,4,7,8-HxCDD 1.07 1.96 0.04 1,2,3,4,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HxCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.08 0.04	1,2,3,4,7,8-HxCDF	1.02	1.81	0.04
2,3,4,6,7,8-HxCDF 1.08 1.36 0.04 1,2,3,7,8,9-HxCDF 0.95 1.46 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,7,8,9-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 0,2,3,4,6,7,8-HpCDD 0.98 0.95 0.08	1,2,3,6,7,8-HxCDF	1.01	1.89	0.04
1.2,3,7,8,9-HxCDF 0.95 1.46 0.04 1,2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,7,8,9-HpCDF 0.98 1.17 0.04 0CDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.004 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,7,8-PeCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HpCDD 0.98 0.95 0.08	2,3,4,6,7,8-HxCDF	1.08	1.36	0.04
1.2,3,4,6,7,8-HpCDF 0.99 1.56 0.04 1,2,3,4,7,8,9-HpCDF 0.98 1.17 0.04 OCDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,4,7,8-HxCDD 0.05 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HxCDD 0.98 1.18 0.04 1,2,3,4,6,7,8-HxCDD 0.98 0.95 0.08	1,2,3,7,8,9-HxCDF	0.95	1.46	0.04
1,2,3,4,7,8,9-HpCDF 0.98 1.17 0.04 OCDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,4,7,8-HxCDD 0.96 1.39 0.05 1,2,3,6,7,8-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 0CDD 1.00 0.95 0.08	1,2,3,4,6,7,8-HpCDF	0.99	1.56	0.04
OCDF 1.56 1.48 0.08 2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,7,8-PeCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,7,8,9-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 0CDD 1.00 0.95 0.08	1,2,3,4,7,8,9-HpCDF	0.98	1.17	0.04
2,3,7,8-TCDD 1.15 0.86 0.008 1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,4,7,8-HxCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,7,8,9-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 0CDD 1.00 0.95 0.08	OCDF	1.56	1.48	0.08
1,2,3,7,8-PeCDD 1.07 1.96 0.04 1,2,3,4,7,8-HxCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,7,8,9-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 0CDD 1.00 0.95 0.08	2,3,7,8-TCDD	1.15	0.86	0.008
1,2,3,4,7,8-HxCDD 1.05 2.04 0.04 1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,7,8,9-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 0CDD 1.00 0.95 0.08	1,2,3,7,8-PeCDD	1.07	1.96	0.04
1,2,3,6,7,8-HxCDD 0.96 1.39 0.05 1,2,3,7,8,9-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 OCDD 1.00 0.95 0.08	1,2,3,4,7,8-HxCDD	1.05	2.04	0.04
1,2,3,7,8,9-HxCDD 0.88 2.46 0.04 1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 OCDD 1.00 0.95 0.08	1,2,3,6,7,8-HxCDD	0.96	1.39	0.05
1,2,3,4,6,7,8-HpCDD 0.98 1.18 0.04 OCDD 1.00 0.95 0.08	1,2,3,7,8,9-HxCDD	0.88	2.46	0.04
OCDD 1.00 0.95 0.08	1,2,3,4,6,7,8-HpCDD	0.98	1.18	0.04
	OCDD	1.00	0.95	0.08

图 3. 17 种 PCDD 和 PCDF 同类物的 MRM 色谱图(将 CS1 稀释 10 倍,浓度范围从 0.05 pg/µL 至 0.5 pg/µL)

分析方法的评估

为评估所提出的 GC/MS/MS 方法的性能,使用该方法对有证标准物质 (CRM) 鱼组织进行了五次重复分析。由表 6 可知,鱼组织中 PCDD/Fs 的浓度范围为 0.23-13.6 pg/g,使用 GC/MS/MS 方 法获得的所有同类物的平均结果均在认 证的参考值范围内。GC/MS/MS 的总 I-TEQ 结果为 19.92 pg/g,与认证参考值 19.81 pg/g 接近。五次重复进样的 RSD 小于 10%。CRM 的 17 种 PCDD/Fs 同系 物的平均离子丰度比(图 4)均在 CS1-CS5 的平均离子丰度的±15% 范围内,满 足 EPA 1613 的要求。总体而言,所提出 的分析方法具有良好的准确度和精密度。

表 6. 有证标准物质 (WMF-01) 中 PCDD/Fs 的分析

		分析值 (n = 5)	
	认证参考值 (pg/g)	平均值 (pg/g)	RSD (%)
2,3,7,8-TCDF	13.1 ± 4.9	12.97	1.0
1,2,3,7,8-PeCDF	1.53 ± 1.4	1.34	8.6
2,3,4,7,8-PeCDF	7.15 ± 2.2	6.43	3.3
1,2,3,4,7,8-HxCDF	0.86 ± 1.0	1.01	6.5
1,2,3,6,7,8-HxCDF	0.51 ± 0.7	0.62	6.0
2,3,4,6,7,8-HxCDF	0.68 ± 1.2	0.67	3.9
1,2,3,7,8,9-HxCDF	0.25 ± 0.4	0.26	8.8
1,2,3,4,6,7,8-HpCDF	1.01 ± 1.9	2.76	2.8
1,2,3,4,7,8,9-HpCDF	0.30 ± 0.5	0.61	3.8
OCDF	1.38 ± 2.1	2.94	8.7
2,3,7,8-TCDD	13.1 ± 4.4	13.6	2.4
1,2,3,7,8-PeCDD	2.72 ± 1.3	2.61	2.9
1,2,3,4,7,8-HxCDD	0.22 ± 0.3	0.27	7.4
1,2,3,6,7,8-HxCDD	0.88 ± 0.4	0.81	9.2
1,2,3,7,8,9-HxCDD	0.27 ± 0.4	0.23	7.6
1,2,3,4,6,7,8-HpCDD	0.59 ± 0.7	0.65	6.5
OCDD	3.91 ± 6.2	2.01	7.9
总 I-TEQ	19.81	19.92	

图 4. CS1-CS5 和 CRM 的 17 种 PCDD/Fs 同系物的平均离子丰度比对比

GC/HRMS 与 GC/MS/MS 分析飞灰样品 中 PCDD/Fs 的比较

对 6 个飞灰样品进行了萃取处理,并使 用 GC/HRMS 进行分析。随后,将同一 样品转移至 GC/MS/MS 再次进行分析。 图 5 展示了 GC/HRMS 和 GC/MS/MS 两 组测定的样品结果对比(总 I-TEQ),所分 析的 6 个飞灰样品浓度范围为 2.1-32.6 pg (I-TEQ)/g。GC/MS/MS 结果与使用 GC/HRMS 获得的结果具有很好的一致性。

结论

Agilent 7010 GC/MS/MS 系统对 17 种高 毒性 PCDD/Fs 同系物实现了可重现的高 灵敏度检测。将该方法应用于有证标准物 质的分析,GC/MS/MS 获得的结果与认 证参考值接近,证明其有很好的适用性。 GC/HRMS 和 GC/MS/MS 分析结果比较 的一致性,表明了 7010 GC/MS/MS 系统 很好的适用性。

图 5. GC/HRMS 和 GC/MS/MS 两组测定的样品结果对比(总 I-TEQ)

参考文献

- Zheng, G. J. *et al.* Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans Pollution in China: Sources, Environmental Levels and Potential Human Health Impacts [J]. *Environment International* 2008, 34(7), 1050–61
- Union, P. O. of the E. Commission Regulation (EU) No 709/2014 of 20 June 2014 amending Regulation (EC) No 152/2009 as regards the determination of the levels of dioxins and polychlorinated biphenyls Text with EEA relevance, CELEX1 https://publications.europa.eu/en/ publication-detail/-/publication/ d626811a-fdcc-11e3831f-01aa75ed71a1/language-en (accessed Nov 16, 2018)
- Bhavasar, S. P. et al. Converting Toxic Equivalents (TEQ) of Dioxins and Dioxin-Like Compounds in Fish From One Toxic Equivalency Factor (TEF) Scheme to Another [J]. *Environment International* 2008, 34(7), 915–21
- Riener, J, 二恶英及二恶英类 PCB 的 GC/MS/MS 确证方法的验证, *安捷伦科技公司应用简报*,出版号 5991-6590CHCN, **2016**
- Method 1613, Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS.
 1997. United States Environmental Protection Agency

查找当地的安捷伦客户中心:

www.agilent.com/chem/contactus-cn

免费专线: 800-820-3278,400-820-3278(手机用户)

联系我们: LSCA-China_800@agilent.com

在线询价: www.agilent.com/chem/erfq-cn

www.agilent.com

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2019 2019 年 10 月 15 日,中国出版 5994-1412ZHCN

