

使用 Agilent 990 微型气相色谱仪分析 锂离子电池中的膨胀气体

作者

Jie Zhang 安捷伦科技有限公司

摘要

本应用简报介绍了使用 Agilent 990 微型气相色谱仪对锂离子电池膨胀气体的分析。 建议使用三种通道进行电池充气中永久性气体和烃类的分析。以反吹至检测器氧化 铝通道得到的组合峰表示 C₆/C₆₊ 烃类的分析结果。如果需要进行详细的烃类分析, Agilent CP-Sil 5 CB 通道可以替代 Agilent CP-Al₂O₃/KCI 通道分析比丙烷重的烃类物质。

前言

锂离子电池 (LIBs) 凭借其能量密度高、 设计灵活、轻便以及比其他类型电池的使 用寿命长等特性,广泛应用于电子设备 中。产生气体(也称为充气、电池体积膨 胀)是锂离子性能下降的常见现象。这通 常由锂离子电池在使用寿命期间发生电解 液降解导致。了解膨胀气体的组成对于优 化电解液的组成至关重要。膨胀气体的主 要成分是一些永久性气体和轻质烃。通常 使用气相色谱法进行 LIBs 气体分析。然 而,某些小型 LIBs 在使用过程中只会产 生几毫升的膨胀气体。这一气体体积不足 以有效吹扫传统气相色谱气体进样阀中的 样品加载流路,因此会影响定量准确度。 对于这些类型的样品, 配备手动进样附件 的 990 微型气相色谱仪是一个不错的选 择,因为它具有灵敏的 µ-TCD 检测和紧 凑的设计, 仅需 5-10 mL 样品即可进行 有效的样品流路吹扫。

实验部分

为 990 微型气相色谱仪装配三个通道, 用于 LIBs 膨胀气体分析。通过微型气相 色谱手动进样附件进行气体样品进样,该 附件通过一个特别设计的托架安装在 990 系统的左侧。使用 10 mL 气密进样针对 锂离子电池的凸起部分进行穿孔,然后将 气体吸入针筒中。然后通过手动进样口, 以 10-20 mL/min 的恒定排气速度将气 体进样至微型气相色谱进样器中。 使用 10 m CP-Molsieve 5Å 反吹通道进行 氢气、甲烷和一氧化碳分析。使用 10 m CP-PoraPLOT U 反吹通道进行 C₂ 烃类和 CO₂ 分析。使用 10 m CP-Al₂O₃/KCI 反吹 至检测器通道进行单独的 C₃-C₅ 烃类和 C₆/C₆₊ 组合化合物分析。使用 6 m CP-Sil 5 CB 通道进行详细的烃类分析。分析参 数见表 1。

校准样品购自液化空气公司,其组成如 表 2 所示。将校准标样充入气袋,对样 品和校准气体进行相同的样品引入。含膨 胀气体的锂离子电池由当地品牌供应商提 供。电池尺寸为 6 cm (长) × 8 cm (宽) × 0.6 cm (高)。

表 1. Agilent 990 微型气相色谱仪的通道配置和分析参数

Agilent 990 微型气相色谱仪分析参数									
通道编号	通道类型	柱温 (°C)	色谱柱压力 (KPa)	BF 时间 (s)	载气				
1	10 m,CP-Molsieve 5Å,反吹通道	90	150	5.2	He				
2	10 m,CP-PoraPLOT U,反吹通道	90	150	8	He				
3	10 m,CP-Al ₂ O ₃ /KCl,反吹至检测器 (BF2D)	100	300	4.5	He				
4	6 m,CP-Sil 5 CB,直型通道	100	150	NA	He				

表 2. 校准气体组成

化合物编号	化合物名称	浓度 (mol/mol)	
1	氢气	12.9%	
2	氮气	63.5%	
3	甲烷	5.06%	
4	一氧化碳	1.01%	
5	二氧化碳	3.01%	
6	乙烷	4.06%	
7	乙烯	2.02%	
8	乙炔	1.04%	
9	丙烷	2.01%	
10	异丁烷	0.495%	
11	正丁烷	0.504%	
12	异戊烷	0.101%	
13	正戊烷	0.102%	
14	正己烷	0.0502%	

结果与讨论

图 1A、1B 和 1C 显示了三个分析通道得 到的校准标样色谱图。 H_2 、CO 和 CH₄ 在 CP-Molsieve 5Å 通道上分离。由于校准 标样和实际样品中的氢浓度处于百分级水 平,因此将氦气用作载气。如果需要对低 浓度 H_2 进行更灵敏的检测,可以将氩气 用作载气。使用 CP-PoraPlot U 对 CO₂、 乙烯、乙烷和乙炔进行了分析。C₃-C₅ 组 分在氧化铝通道上分离。在 CP-Al₂O₃/KCI 通道上,对比正己烷重的烃类物质进行了 反吹,并将其以组合峰的形式洗脱。三个 通道均为反吹类型。

图 1. Agilent CP-Molsieve 5Å、CP-PoraPLOT U 和 CP-Al₂O₃/KCI 分析通道得到的校准标样色谱图

通过对校准标样进行 10 次连续进样,评 估了手动进样的分析重现性。峰面积和保 留时间 (RT) 重现性如表 3 所示。第一次 进样各目标组分的峰面积响应与后续进样 获得的响应相似,这意味着在每次运行 中,10 mL 样品可以有效吹扫从进样针进 样口至通道样品定量环出口的内部体积。

对来自当地品牌锂离子电池的真实膨胀气 体样品进行了分析。从充气腔抽取 10 mL 膨胀气体并进样。色谱图(图 2A、2B 和 2C)中对鉴定得到的峰进行了标记。通 过 CP-Al₂O₃/KCI 通道可观察到在丙烷后 洗脱的一些未知峰。由于缺乏校准标样, 无法识别这些峰。根据公式 1,使用通过 校准标样计算得到的响应因子对所有鉴定 组分进行了定量。利用正己烷的响应因子 对 $_{6}/C_{6+}$ 的组合峰进行了定量。鉴定组分 的测量浓度如表 3 所示。

$$V_{ri} = A_{ri}/F_i$$

公式 1

 $F_i = V_i / A_i$

- V_ri 实际样品中组分 i 的计算体积浓度 (mol/mol)
- Ari 实际样品中组分 i 的峰面积响应
- F_i 校准样品中组分 i 的响应因子
- Vi 校准样品中组分 i 的标称体积浓度 (mol/mol)
- A_i 校准样品中组分 i 的峰面积响应

化合物	RT (min)	RT RSD%	峰面积 (mv * s)	峰面积 RSD%	锂电池膨胀气体中鉴定到的 化合物浓度 (mol/mol)
H ₂	0.356	0.009	0.57	2.68	12.86%
CH ₄	0.978	0.007	19.29	0.12	46.47%
СО	1.434	0.008	4.55	0.25	1.65%
CO ₂	0.375	0.02	20.37	0.37	2.94%
C ₂ H ₄	0.4	0.015	14.02	0.37	0.31%
C ₂ H ₆	0.414	0.012	29.94	0.33	6.74%
C ₂ H ₂	0.437	0.011	5.93	0.37	2.35%
C ₃ H ₈	0.354	0.009	8.23	0.36	0.086%
i-C4	0.471	0.013	2.34	0.39	NA
n-C ₄	0.494	0.013	2.51	0.48	NA
i-C₅	0.901	0.023	0.53	1.58	NA
n-C ₅	0.969	0.024	0.56	2.43	NA
C ₆ /C ₆₊	0.156	0.017	0.33	0.70	1.79%

表 3. 校准标样 10 次重复进样的峰面积和 RT 重现性

图 2. 分析通道得到的膨胀气体色谱图

在本研究中,以 C₆/C₆₊ 组合峰的形式表 示重烃(≥正己烷)的分析结果。有时, 需要重烃的指纹测试信息。为满足此类分 析要求,建议使用 6 m CP-Sil 5 CB 直型 通道进行分离。如图 3 所示,通过 CP-Sil 5 CB 色谱柱可以分离校准标样中从丙烷 到正己烷的烃类物质。我们之前的研究 表明,在此类通道上,正辛烷在150秒 内流出^[1,2]。该通道可以分离碳链最长至 正壬烷的重质烃类。CP-Sil 5 CB 通道得 到的真实膨胀气体色谱图如图 4 所示。 在该图中,丙烷在 0.225 分钟处被标记为 5cb-C3。在正丁烷(0.268 分钟)和正己 烷(0.501分钟)的时间窗口之间有四个 洗脱峰。三种组分在 n-C₆(0.501 分钟) 后洗脱。在具有校准标样的情况下,6m CP-Sil 5 CB 通道的良好分离度使未知峰 的鉴定更加容易。

图 3.6 m Agilent CP-Sil 5 CB 通道得到的 C3-C6 的色谱图

图 4.6 m Agilent CP-Sil 5 CB 通道得到的膨胀气体色谱图

结论

在本研究中,使用配备手动进样附件和三 个分析通道的 990 微型气相色谱仪对锂离 子电池中的小体积膨胀气体进行了分析。 进样针进样是一种可靠进行小体积气体采 样的方法。使用 CP-Molsieve 5Å 对永久性 气体进行了分析,并通过 CP-PoraPLOT U 通道实现了 CO_2 和 C_2 的分离。使用 BF2D Al_2O_3 通道对 C_3-C_5 烃类进行了分析,同时 获得了 C_6/C_{6+} 的组合信息。根据需要,可 使用直型 CP-Sil 5 CB 通道替代氧化铝通道 进行详细的烃类分析。单次运行的分析时 间不到 150 秒。峰面积重现性良好,响应 RSD% 范围为 0.1%-3%。测试结果表明, Agilent 990 微型气相色谱仪是进行快速、 小体积电池膨胀气体分析的理想选择。

参考文献

- Van Loon, R.、Amarasinghe, S. 和 Ahmed, K.,使用安捷伦微型气相色 谱仪在燃料电池开发和测试中进行快 速气体成分分析,安捷伦科技公司应 用简报,出版号 5991-3364CHCN, 2011
- 使用 Agilent 990 微型气相色谱天然 气分析仪快速分析天然气,安捷伦科 技公司应用简报,出版号 5994-1040ZHCN, 2019

查找当地的安捷伦客户中心: www.agilent.com/chem/contactus-cn

免费专线: 800-820-3278,400-820-3278(手机用户)

联系我们: LSCA-China_800@agilent.com

在线询价: www.agilent.com/chem/erfq-cn

www.agilent.com

DE.6109606481

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2020 2020 年 8 月 24 日,中国出版 5994-2321ZHCN

