<mark>팜유 내 PAH 분석</mark> 중대한 견고성 개선 사항

기술적 이점: GC/MS/MS 시스템 내의 Agilent JetClean 자동 세척 이온화원

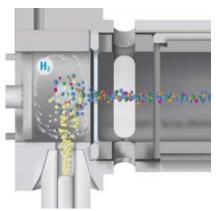


그림 1. Agilent JetClean 자동 세척 이온화원

서론

식품 내 다환 방향족 탄화수소(PAH)는 잠재적 발암성과 식품 공급 내존재에 대한 사람들의 인식이 높아짐에 따라, 규제 한계도 지속적으로 낮아지고 있습니다. 유럽 규제 1881/2006에서 규정한 주요 매트릭스 내오염 수준의 최대 허용량은 $1\mu g/kg$ 입니다¹.

복잡한 식품 매트릭스 내에서 이러한 검출 수준을 일관되게 얻기 위해서는, 일반적으로 잦은 EI 이온화원 세척이 필요하며, 이는 실험실 생산성 손실을 초래할 수 있습니다.

Agilent JetClean 자동 세척 이온화원은 자동으로 제어된 수소 첨가를 통해, 잦은 수동 세척 필요성을 제거하고, 수 개월 동안의 작동에 일관된 결과를 얻을 수 있도록 보증합니다.

기기

- Agilent 7000C GC/MS/MS 기반 PAH 분석기
- DB-EUPAH 컬럼(30m x 0.25mm, 0.25µm) 및 컬럼 후 백플러시
- Agilent JetClean 자동 세척 이온화원, 연속 H₃ 흐름

자세한 내용은 다음 웹사이트를 참조하십시오. www.agilent.com

시료 전처리

팜유는 일반적인 식품 성분으로 까다로운 매트릭스에 속하며, 정제 과정 없이 toluene으로 추출하였습니다. 추출액에 규제 대상인 4종 PAH를 각각 5ng/mL 농도로 스파이킹하여, 팜유 내 benzo(a)pyrene(BaP), benzo(a)anthracene(BaA), chrysene, benzo(b)fluoranthene(BbF)의 농도가 1μg/kg와 등가를 이루도록 하였습니다. 분석물질의 ¹³C 표지는 내부 표준물질로서 첨가되었습니다.

연구 시퀀스

시스템 정밀도와 견고성을 측정하기 위해 5일 동안의 평가 기간을 설계하였습니다. 표 1은 매일 수행된 주입 시퀀스를 보여줍니다.

표 1. 시스템 정밀도와 견고성을 측정하도록 설계된 주입 시퀀스

일일 주입(5일간 반복하여 수행)					
1	바탕	Toluene			
2-11 (10)	검량	0, 1, 2.5, 5, 10, 20, 30, 50, 80, 100ng/mL, 매트릭스 내 0, 0.2, 0.5, 1, 2, 4, 6, 10, 16, 20µg/kg과 동등			
12	바탕	Toluene			
13-18 (6)	QC 시료	1ng/mL, 매트릭스 내 0.2μg/kg과 동등			
19	바탕	Toluene			
20-25 (6)	팜유 추출물	5ng/mL, 매트릭스 내 1µg/kg과 동등			
26	바탕	Toluene			
27-32 (6)	QC 시료	1ng/mL, 매트릭스 내 0.2μg/kg과 동등			
33	바탕	Toluene			
34-39 (6)	팜유 추출물	5ng/mL, 매트릭스 내 1µg/kg과 동등			
40	바탕	Toluene			

결과 및 토의

검량

매일 10개 포인트의 선형 검량선이 1~100ng/mL의 범위에서 준비되었습니다. 첫 번째 날 BaP의 R² 값은 0.9976이었으며, 5번째 날에는 첫 번째 날과 거의 동일한 0.9972로 뛰어난 직선성을 획득하였습니다. R² 차이는 오직 0.0004이었으며, 이는 검량 사이에 200회가 넘는 시료 주입, 더구나 이 중의 대다수가 중질(heavy) 매트릭스인 팜유 추출물임에도, 시스템 조건이 거의 변하지 않았음을 의미합니다.

정밀도

표 2는 팜유 추출물 내에서 검출된 각 PAH의 1일차와 5일차의 12회 주입에서 나타난 면적 count를 보여줍니다. 매일 각 분석물질에 대해 매우 낮은 면적 count %RSD인 안정적인 감응 결과가 나타났습니다. 1일차와 5일차의 결과를 합친 %RSD는 4% 이하이었습니다. 이는 원 면적 count 에만 기반한 것이며, 내부 표준물질 감응을 이용하여 복잡한 매트릭스 분석 시 자주 발생하는 작은 작동상의 비정밀도를 보정하지 않았습니다.

표 2. 팜유 추출물 내에서 검출된 각 PAH의 면적 count, 1 ng/mL의 농도로 12회 주입(매트릭스 내 $0.2 \mu \text{g/kg}$).

면적	1일차	5일차	1일차	5일차	1일차	5일차	1일차	5일차
시료	Ва	aA	Chry	sene	Bl	bF	Ва	aР
SPK_OIL-1	124,833	125,119	119,104	118,308	149,500	147,912	167,868	154,471
SPK_OIL-2	122,837	132,562	116,891	127,786	148,031	158,223	171,496	185,316
SPK_OIL-3	126,858	120,574	118,272	109,267	152,958	144,451	174,546	162,590
SPK_OIL-4	124,750	126,248	119,199	122,896	147,486	149,448	166,499	172,664
SPK_OIL-5	126,454	128,350	120,454	118,989	151,083	149,821	174,304	170,538
SPK_OIL-6	125,048	124,918	117,413	116,110	146,604	147,202	169,356	160,305
SPK_OIL-7	126,848	127,236	120,370	121,535	155,079	149,775	168,295	169,821
SPK_OIL-8	128,167	133,703	120,799	128,893	150,774	158,544	174,729	182,656
SPK_OIL-9	121,409	121,916	117,578	115,348	151,576	146,707	168,768	165,262
SPK_OIL-10	122,218	125,474	118,858	124,321	149,693	148,796	170,291	166,748
SPK_OIL-11	125,949	128,717	120,147	122,050	151,454	153,817	175,673	166,051
SPK_OIL-12	129,523	127,455	121,779	121,687	156,374	149,013	172,214	170,050
%RSD Area (12 inj.)	1.8	2.9	1.2	4.3	1.9	2.8	1.7	4.9
%RSD, 24 inj. (1일차+5일차)	2	.5	3	.2	2	.4	3	.7

검출 수준

JetClean 이온화원은 또한 크로마토그래피 피크 모양이 1일차부터 5일차까지 가우스 분포를 유지하도록 해주며, 강력하고 정량하기 쉬운 피크를 제공하였습니다. 1pg의 양은 시료 추출액 내 최대 허용량의 1/5이며, 이유식과 같은 가장 까다로운 매트릭스에서도 규제 요건을 쉽게 충족시킬 수 있습니다.

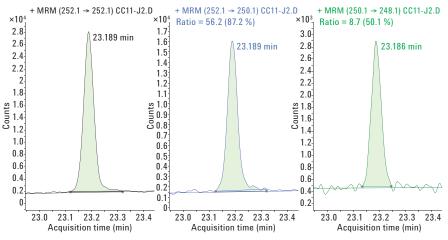


그림 2. 이 크로마토그램은 가장 낮은 검량 농도인 1ng/mL 또는 1pg 온-컬럼(on-column)에서 benzo(a)pyrene의 정량 및 정성 이온 플롯을 나타냅니다.

QC 시료(=1ng/mL)의 여러 회 주입에서 얻은 정밀도와 정확도는 팜유 추출물 표에 나타난 결과와 같이 매우 우수합니다. 검출된 benzo(a) pyrene 양의 표준 편차(n=8)는 0.0582이었으며, 통계적으로(99% 신뢰수준, n-1, 자유도) 0.175pg의 검출 한계를 얻었습니다. 여러 회 주입에 사용된 농도가 너무 높아 추정된 검출 한계가 시스템의 실제 성취 가능한 성능보다 훨씬 높은 결과를 나타낼 수 있기 때문에, 반복하여 측정을 수행해야 합니다.

세척 빈도

동일 구성의 시스템을 식품 실험실에 배치하였습니다. 이 시스템 설치이후 11개월이 넘는 시간 동안, 예전의 월별 수동 세척 필요성을 제거하고 유사한 결과 및 중단 없는 작업을 제공하였습니다. 이온화원의 세척 빈도 감소는 생산성과 편의성을 향상시켰습니다. 수 개월 동안 수동 세척 없이환경 시료 내의 PAH를 성공적으로 검출한 사례도 보고되었습니다².

Agilent JetClean 자동 세척 이온화원 사용

7월	8월	9월
10월	11월	12월
1월	2월	3월
4월	5월	6월

Agilent JetClean 자동 세척 이온화원 미사용

7월	8월	9월
10월	11월	12월
1월	2월	3월
4월	5월	6월

그림 3. Agilent JetClean 자동 세척 이온화원은 매달 세척해야 하는 필요성을 제거합니다.

결론

시스템 정확도, 정밀도 및 견고성은 5일간의 실험실 테스트에서 뛰어난 결과를 나타냈습니다. Agilent JetClean 이온화원을 장착한 GC/MS는 식품에서의 EU 규제, 심지어 영아용 조제분유에서도 쉽게 충족시켰습니다. 이의 검출 한계는 규제된 최대 수준의 1/5이며, 장시간에 걸쳐서도 우수한 정밀도와 정확도를 유지할 수 있습니다. 그리고 식품 실험실 현장에 유사한 구성의 시스템을 배치한 결과 동일하게 뛰어난 결과를 나타냈습니다.

참고문헌

- Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
- 2. Anderson, K. A.; et al.
 Modified ion source
 triple quadrupole mass
 spectrometer gas
 chromatograph for polycyclic
 aromatic hydrocarbon
 analyses. Journal of
 Chromatography A 2015,
 1419, 89-98.

www.agilent.com 이 발행물의 정보, 설명 및 사양은 사전 고지 없이 변경될 수 있습니다.

© Agilent Technologies, Inc. 2016 2016년 12월 6일, 한국에서 발행 5991-7520KO

서울시 용산구 한남대로 98, 일신빌딩 4층 우)04418 한국애질런트테크놀로지스(주) 생명과학/화학분석 사업부 고객지원센터 080-004-5090 www.aqilent.co.kr

