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Abstract
SureSelect XT HS2 RNA sequencing was combined with CiberMed’s iSort digital 
cytometry solution to enable highly accurate, cost-effective profiling of leukocyte 
composition from peripheral blood samples. Enrichment of genes in the LM22 
signature matrix, a well-established collection of reference profiles for distinguishing 
22 human immune subsets, was achieved with two new targeted sequencing 
panels—Agilent SureSelect CD CiberMed Heme and Agilent SureSelect CD CiberMed 
Heme + HiRes. Both panels were assessed for their ability to profile leukocyte 
subsets with CiberMed’s iSort Fractions software.

Applied to 36 whole blood samples and seven major leukocyte populations, cell type 
fractions determined by iSort were highly concordant with ground truth fractions 
determined by clinical grade standards (r ≥ 0.96) and exhibited strong reproducibility 
across technical replicates (r ≥ 0.98). Furthermore, targeted enrichment using the 
SureSelect CD CiberMed Heme panel reduced the sequencing requirement by 
nearly 50-fold compared to whole-transcriptome sequencing, while also improving 
accuracy. These new panels for digital cytometry are available through the Agilent 
Community Design program to enable focused, reliable, and high-throughput 
analysis of cell type composition from peripheral blood samples.                

SureSelect Targeted Panel Paired With 
iSort Enables Robust Enumeration 
of Immune Cell-type Abundances in 
Human Blood Samples
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Introduction
Cellular heterogeneity and complex intercellular interactions 
underlie diverse physiological and pathological states, 
including various malignancies. Therefore, it is critically 
important to study the phenotypic and genotypic composition 
of cell subsets within the diseased milieu. It is also essential 
to monitor changes in their relative abundances during 
disease progression and in response to therapy. The 
importance of studying cellular heterogeneity and immune 
composition within the tumor microenvironment (TME) is 
well established.1-3 Enumerating immune cell composition 
has prognostic value and holds great promise as a potential 
predictive biomarker for therapy response.4,5 Therefore, both 
traditional and next-generation methodologies are routinely 
employed to quantify immune cell subsets in research and 
clinical settings (Table 1).

Traditional cell profiling methods such as flow cytometry, 
mass cytometry,6,7 immunohistochemistry (IHC),8 and 
immunofluorescence (IF)9 are powerful tools for quantifying 
and characterizing immune cell subtypes. However, only a 
handful of markers can be interrogated by these methods 
and there is often a trade-off between the number of markers 
that can be measured and the throughput of the assay. 
Cytometry by time-of-flight (CyTOF)10 is destructive to the 
sample and doesn’t enable co-interrogation of cell type 
fractions and cell type expression profiles across thousands 
of genes. In more recent years, single-cell RNA sequencing 
(RNA-Seq) approaches have been embraced as a means of 
characterizing immune cell composition and gene expression 
at the single-cell level. However, single-cell RNA-Seq is limited 
by sample preparation artifacts, including dissociation-
induced distortions in cellular composition, and remains cost 
prohibitive for large-scale cellular profiling.11

Given these limitations, deconvolution algorithms for 
determining cell type abundances from bulk tissue expression 
profiles have gained traction.1,2,12-16 These methodologies 
enable dissection of cell-type-specific signals from bulk 
sequencing data. Comparative analyses of single-cell RNA-
Seq, deconvolution of bulk expression data, and IHC revealed 
that deconvolution is free from artifacts arising from cell 
separation and tissue dissociation.17 Of these deconvolution 
methods, CIBERSORT and CIBERSORTx, have emerged 
as robust and accurate tools for determining immune cell 
type proportions from blood and tissue samples.3,17-28 In 
fact, CIBERSORT/x was recently identified as one of the five 
fastest-growing software tools in the biosciences.29 

CiberMed further optimized and standardized CIBERSORT/x 
with proprietary enhancements, validated the improved 
algorithms with different sample types and platforms. 
CiberMed currently offers them via two flagship products 

within the iSort digital cytometry suite (Figure 1). These 
include iSort Fractions for reliably determining cell subset 
abundance from bulk tissue or blood expression data and 
iSort HiRes for inferring cell-type-specific gene expression 
profiles from bulk tissue or blood expression data. iSort 
Fractions uses the well-established LM22 leukocyte gene 
signature matrix to distinguish 22 human hematopoietic 
cell subsets. This includes seven T cell subsets, naïve and 
memory B cells, plasma cells, resting and activated NK cells, 
monocytes, eosinophils, and neutrophils (see Table 2 for 
the complete list of cell subsets).3  LM22 has been validated 
in pure leukocyte subset titrations, blood samples, and 
tumors from multiple cancer types. Because iSort Fractions 
determine cell type proportions, cell subsets within LM22 can 
be further grouped into various parental cell types of interest, 
including 11 major leukocyte types based on shared lineage.3 

In this application note, we demonstrate robust, accurate, 
and reproducible enumeration of immune cell subsets from 
36 whole blood samples using iSort Fractions combined 
with the Agilent SureSelect target enrichment solution 
(Figure 2). Two panels, SureSelect CD CiberMed Heme and 
SureSelect CD CiberMed Heme + HiRes, were employed to 
enrich Agilent SureSelect XT HS2 RNA libraries prepared 
from these samples (panel design details are provided 
under Table 3). The SureSelect CD CiberMed Heme panel 
includes LM22 genes, and in conjunction with CiberMed’s 
iSort Fractions analysis, is intended for determination of 
immune composition from blood samples. The SureSelect CD 
CiberMed Heme + HiRes panel includes both LM22 genes and 
a set of control genes for demonstrating the capabilities of 
iSort HiRes. The latter is intended to be paired with a custom 
gene panel covering additional genes of interest. 

Across 36 whole blood samples profiled by one or both 
panels, leukocyte proportions predicted by iSort Fractions 
showed high concordance with ground truth composition 
across seven major populations (r ≥ 0.96; Figure 3). There 
was also strong reproducibility between sample technical 
replicates (Figure 4). Because of several proprietary 
enhancements, we found that iSort Fractions outperforms 
CIBERSORT/x for the enumeration of immune composition 
from peripheral blood. Notably, targeted enrichment with the 
SureSelect CD CiberMed Heme panel reduced the sequencing 
requirement to only 500 k (250 k × 2) input reads per sample, 
as opposed to approximately 20 M (10 M × 2) input reads 
per sample for whole-transcriptome sequencing (Figures 5 
to 7). The decrease equates to a nearly 50-fold reduction in 
sequencing cost-per-sample.

Altogether, these results underscore the accuracy, reliability, 
and cost-effectiveness of the combined SureSelect/iSort 
assay for immune cell profiling.
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Table 2. Twenty-two human hematopoietic cell types in the LM22 signature matrix. 

Parent Subsets Cell Type Description

B cells B cells naïve

B cells memory

Plasma cells Plasma cells

CD8 T cells T cells CD8

CD4 T cells T cells CD4 naïve

T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

T cells regulatory (Tregs)

Gamma delta T cells T cells gamma delta

NK cells NK cells resting

NK cells activated

Monocytes and Macrophages Monocytes

Macrophages M0

Macrophages M1

Macrophages M2

Dendritic cells Dendritic cells resting

Dendritic cells activated

Mast cells Mast cells resting

Mast cells activated

Eosinophils Eosinophils

PMNs Neutrophils

Software-Based  
Deconvolution

Single-Cell  
RNA-Seq

Flow Cytometry/ 
CyTOF IHC

Throughput +++++ + ++ +++

Requires tissue dissociation No Yes Yes No

Artifacts introduced by dissociation No Yes Yes No

Workflow simplicity +++++ + ++ ++++

Manual data analysis required No Yes Yes Yes

Number of cell types/cell type resolution +++++ +++++ +++ +++

Table 1. Comparison of cell profiling methods.

SureSelect CD CiberMed Heme SureSelect CD CiberMed 
Heme + HiRes

Intended Application Enumeration of 22 immune cell subsets  
(Table 1) with iSort Fractions

Enumeration of 22 immune cell subsets (Table 1) with iSort Fractions 
and confirmation of cell-type-specific gene expression purification 
with iSort HiRes

Sample Type Whole blood, PBMCs Whole blood, PBMCs

Includes LM22 Signature Matrix Yes Yes

Number of Targets 547 genes 685 genes

Total Capture Size 1.8 Mb 2.4 Mb

Recommended Min Reads/Sample 500k (250k × 2, 150 bp) 1 M (500k × 2, 150 bp)

Table 3. Comparison of panel designs and intended applications. 
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Figure 1. Schematic of iSort algorithms for digital cytometry. Expression purification estimates of cell type proportions (iSort Fractions) and cell-type-specific 
expression (iSort HiRes). 
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Figure 2. End-to-end workflow supported by kitted reagents and instrumentation from Agilent and an integrated analysis solution from CiberMed. 
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Materials and methods
Samples
Whole blood samples were freshly collected from 36 
healthy donors and split into two fractions. One fraction was 
immediately processed for complete blood count (CBC) and 
enumeration of the major leukocyte populations by flow 
cytometry. The other fraction was stored in PAXgene Blood 
RNA tubes for subsequent RNA sequencing. A Sysmex 
system was employed for CBC quantification of neutrophils, 
lymphocytes, and monocytes. A Becton Dickinson six-color 
TBNK MultiTest in vitro diagnostic (IVD) assay was employed 
for enumerating B cells, CD8 T cells, CD4 T cells, and NK cells 
by flow cytometry. CBC and TBNK data were jointly used 
as ground truth to assess deconvolution performance from 
targeted and whole-transcriptome bulk RNA sequencing data.

Library preparation and target enrichment for targeted 
RNA sequencing 
Total RNA was extracted using a PAXgene Blood RNA kit from 
whole blood samples collected in PAXgene Blood RNA tubes 
from healthy adult donors. The isolated total RNA was of high 
quality with RIN values of 8.0 or above. 

Library preparation and targeted enrichment were performed 
using an Agilent Bravo NGS workstation option B following the 
SureSelect XT HS2 RNA system user guide G9993-90010.31 
SureSelect XT HS2 RNA Reagent Kits G9991A and G9991B 
were employed to generate three technical replicate libraries 
per sample, each starting with an input of 30 ng total RNA. 
Agilent SureSelect XT HS2 RNA Target Enrichment kit part 
number G9994A was employed to enrich blood sample 
libraries with either SureSelect CD CiberMed Heme (for 12 
blood samples) or SureSelect CD CiberMed Heme + HiRes 
panel (for 36 blood samples).

Agilent SureDesign software was used to create the two 
community design panels, SureSelect CD CiberMed Heme 
and SureSelect CD CiberMed Heme + HiRes. The SureSelect 
CD CiberMed Heme panel covers all 547 genes in the LM22 
signature matrix. The SureSelect CD CiberMed Heme + HiRes 
panel includes an additional 138 control genes for iSort HiRes 
analysis (Table 3). Manual curation was performed to ensure 
full coverage of the coding region for every included gene. 

Enriched libraries were sequenced as 2 × 150 bp paired 
end reads on either an Illumina HiSeq4000 or an Illumina 
NovaSeq 6000 instrument. Each sample was sequenced 
to approximately 24 M (12 M × 2) total reads to allow 
performance assessment at varying depths of coverage.

Data processing
As input to iSort, RNA sequencing reads (in FASTQ format) 
were first summarized to gene expression values in 
transcripts per million (TPM). While this can be accomplished 
using any standard mapping/alignment approach, for the 
data presented here, we used Salmon v1.132 to map and 
quantify RNA-Seq reads. The TPM values were then used as 
input to iSort Fractions v1.4, which determined the relative 
fractions of 22 immune subsets (Table 1) in each blood 
sample. As a comparator, we also evaluated STAR33 for 
mapping and RSEM34 for read summarization. We confirmed 
that the distinct read alignment and quantification methods 
didn’t significantly impact the performance of iSort Fractions 
(data not shown).

CiberMed software tools, iSort Fractions, and iSort HiRes, are 
currently available as docker-containerized tools that can be 
run locally. iSort Fractions is also available via a user-friendly 
Web interface run securely via AWS (Amazon Web Services) 
at https://isort.cibermed.com.

For more details about the iSort digital cytometry suite, 
please follow this link: https://isort.cibermed.com/iSort_
ProductsAndServices.pdf.

Performance evaluation
Concordance was determined by applying Spearman rho, 
Pearson r, and RMSE to cell type proportions. Mutually 
exclusive cell types were normalized to 100% per sample to 
promote a fair comparison. 

Read titration
To determine the impact of the number of reads per sample 
on deconvolution accuracy and reproducibility, paired reads 
were randomly sampled to 600 k, 200 k, 100 k, 20 k, and 2 k 
effective reads per sample. Effective reads are defined as the 
number of reads mapped “on-target” to the genes included 
in the SureSelect CD CiberMed Heme panel. Input reads are 
calculated as [minimum effective reads] / [on-target map rate].

https://isort.cibermed.com
https://isort.cibermed.com/iSort_ProductsAndServices.pdf
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Results
Quality control (QC) metrics for targeted RNA-Seq data were 
generated in this study using the SureSelect CD CiberMed 
Heme panel and an internal pipeline. All QC data passed 
internal QC requirements. Comparable results were obtained 
with data generated by the SureSelect CD CiberMed Heme + 
HiRes panel (data available upon request).

Accuracy 
Figure 3 summarizes the accuracy of iSort Fractions for 
deconvolving major leukocyte populations in 36 blood 
samples as compared to orthogonal cell profiling by 
clinical grade standards. Clear performance gains can be 
seen for iSort over CIBERSORTx (Figures 3b versus 3a). 
Gains in performance can also be observed for targeted 
sequencing with the SureSelect CD CiberMed Heme panels 
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Figure 3. Relative leukocyte abundances from the whole blood of 36 healthy adult donors. Data comparison generated by (a) whole-transcriptome sequencing 
analyzed by CIBERSORTx, (b) whole-transcriptome sequencing analyzed by iSort Fractions, (c) SureSelect CD CiberMed Heme + HiRes panel analyzed by 
iSort Fractions, and (d) SureSelect CD CiberMed Heme panel analyzed by iSort Fractions. Each data point represents a sample and is color-coded by cell type. 
Predicted and ground truth proportions are shown on the x-axis and y-axis, respectively.

(including the Heme + HiRes panel) over whole-transcriptome 
sequencing (Figures 3c versus 3b). Both SureSelect panels 
showed comparable performance (Figures 3c and 3d). While 
CIBERSORT/x was developed by Stanford University3,17 and 
is the most widely used deconvolution tool in academic 
settings,30 iSort Fractions is an optimized and standardized 
version of CIBERSORT/x that can achieve superior 
performance (Figure 3). 

Reproducibility 
To assess reproducibility, blood samples were sequenced 
in triplicate and the concordance of iSort Fractions across 
technical replicates was evaluated (Figure 4). All pairwise 
comparisons across the three replicates achieved Pearson 
correlations of at least 0.98 and Spearman correlations of at 
least 0.94 (Figure 4), demonstrating strong reproducibility.
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Figure 4. Comparison of iSort Fractions results among three sequencing replicates. Each data point represents a sample and is color-coded by cell type. The first 
three plots (upper row) show the abundance of all 22 cell types. Neutrophils are excluded in the bottom three scatterplots to expand the 0 to 15% range. Results 
were calculated using the SureSelect CD CiberMed Heme panel applied to whole blood from 12 healthy adult donors.

Sequencing requirement 
Each blood sample was sequenced to an average of 24 M  
(12 M × 2) reads for SureSelect CD CiberMed Heme panel, 
and 84 M (42 M × 2) reads for whole-transcriptome libraries. 
To determine the minimum number of reads needed per 
sample without compromising performance, we performed 
a titration experiment. In this experiment, the number of 
effective reads per sample was down-sampled to predefined 
quantities before running iSort Fractions (where “effective 
reads” denotes on-target reads only) (Figure 5). The 
SureSelect CD CiberMed Heme panel maintained accurate 
and stable performance down to 100 k effective reads 
(Figures 5a, 6, and 7). The panel also achieved a lower median 
RMSE than whole-transcriptome sequencing for all read 
quantities evaluated (Figure 5b). 

Based on these data, when using the SureSelect CD CiberMed 
Heme Panel, the total number of required input reads is 
expected to range from approximately 140 k per sample 
(assuming a 75% on-target mapping rate) to approximately 
500 k per sample (if the mapping rate is uncharacteristically 
low). Therefore, a conservative projection of 500 k (250 
k × 2) total input reads per sample should be sufficient 
for nearly every application. Since at least 20 M (10 M × 
2) input reads are recommended when using data from 
whole-transcriptome sequencing for iSort Fractions, the 
SureSelect CD CiberMed Heme panel is expected to reduce 
the sequencing cost by nearly 50-fold while achieving superior 
performance.
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Figure 7. Reproducibility across three sequencing replicates, analyzed by the number of effective reads per sample (that is, the number of reads mapped to 
SureSelect CD Heme panel genes). Except for neutrophils, all cell types show consistent performance down to 100 k (50 k × 2) effective reads with a mean 
standard deviation less than one. Neutrophils show a comparable trend but have a slightly larger mean standard deviation owing to a higher mean abundance than 
other evaluated cell types (approximately 65% versus a mean abundance of <7%). Cell types with a mean abundance of less than 0.1% are not shown. The x-axis 
shows the number of effective reads per sample. Results were calculated using the SureSelect CD CiberMed Heme panel applied to whole blood from 12 healthy 
adult donors. 

Conclusion
In this application note, we describe the performance 
characteristics of two SureSelect CD Heme panels for 
leukocyte profiling with iSort, a state-of-the-art software 
solution for digital cytometry (CiberMed). There are 
several applications that would benefit from the enhanced 
robustness, accuracy, and cost-effectiveness of this new joint 
assay for "cytometry by sequencing". These include routine 
and translational blood composition analysis,35 retrospective 
characterization of bulk expression data to derive new 
insights into cellular composition1, and large-scale validation 
of sequencing analyses.36 Additional applications include the 
general assessment of leukocyte composition under diverse 
physiological and pathological conditions, all without the need 
for antibodies, fresh specimens, viable material, or millions of 
cells.

The utility of the core iSort methodology has been 
demonstrated in multiple contexts, including immuno-
oncology,37,38 organ transplantation,39 cardiology,40 Crohn’s 
disease,30 and neonatal sepsis.41 The ability to deconvolve 
alternative genomic data types, including methylation 
and proteomic profiles, has also been demonstrated.19,42 
Furthermore, iSort has been analytically validated for 
whole blood samples and fresh, frozen, and fixed tumor 
specimens.27,30 The core algorithm underlying iSort has 
become the standard methodology for deconvolution in large 
cancer studies and datasets, such as The Cancer Genome 
Atlas (TCGA) and is being applied in clinical trials.43-46 Given 
the performance gains demonstrated here, the SureSelect/
iSort assay for digital cytometry promises to facilitate many 
exciting and impactful future applications.
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