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Abstract
CiberMed’s iSort software suite is a widely used digital cytometry solution for 
profiling the cellular composition of complex tissues from bulk RNA-sequencing 
(RNA-seq) data. iSort Fractions ‘tissue mode’ quantifies the relative fractions 
of 22 functionally defined hematopoietic subsets along with three non-immune 
cell types—fibroblasts, endothelial cells, and epithelial cells—from bulk tissue 
expression data. To enable accurate enumeration of these 25 cell types from 
fresh/frozen (FF) or formalin-fixed paraffin-embedded (FFPE) samples, iSort 
Fractions includes specialized methods to remove noise and technical variation 
across diverse platforms and sample preservation conditions. In this study, we 
assess the accuracy, robustness, and reproducibility of the Agilent SureSelect CD 
CiberMed Tissue panel using iSort Fractions. This panel was developed to enable 
highly efficient and reliable enumeration of 25 cell types from FF or FFPE tissues. 

Total RNA from paired FF and FFPE tumor specimens was extracted and 
prepared for sequencing using Agilent SureSelect XT HS2 RNA reagents and for 
target enrichment using the SureSelect CD CiberMed Tissue panel. The resulting 
sequencing data were analyzed using iSort Fractions tissue mode. Across all 
evaluable phenotypes (n = 25), cell type fractions determined by iSort were 
highly concordant between paired FF and FFPE tumor samples (rho = 0.93). 
This substantially outperformed whole-transcriptome profiling (rho = 0.78) while 
requiring approximately 20-fold less sequencing. Additionally, strong reproducibility 
was observed between technical replicates profiled by targeted sequencing (rho ≥ 
0.97 for FF and rho ≥ 0.96 for FFPE). The SureSelect CD CiberMed Tissue panel is 
available through the Agilent Community Design program to enable highly accurate 
cellular profiling of fresh/frozen and fixed tissue specimens with iSort.

Agilent SureSelect Targeted RNA-Seq 
Paired With iSort Enables Robust 
Enumeration of Cell Type Composition 
in Solid Tissue Samples
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Introduction
Cellular heterogeneity and complex intercellular interactions 
underlie diverse physiological and pathological states, 
including various malignancies. Therefore, it is critically 
important to study the phenotypic and genotypic composition 
of cell subsets within the diseased milieu. It is also 
essential to monitor changes in their relative abundances 
during disease progression and in response to therapy. 
The importance of studying cellular heterogeneity and 
composition within the tumor microenvironment (TME) is 
well established.1-3 Enumerating cell type composition has 
prognostic value and holds great promise as a potential 
predictive biomarker for therapy response.4,5 Therefore, 
traditional methods such as flow/mass cytometry,6,7 
immunohistochemistry (IHC),8 and immunofluorescence (IF)9 
are routinely employed for quantifying and characterizing 
tissue heterogeneity (Table 1). However, these methods can 
only interrogate a modest number of markers and there is 
often a trade-off between the number of markers that can 
be measured and the throughput of the assay. Cytometry 
by time-of-flight (CyTOF)10 is destructive to the sample and 
does not enable co-interrogation of cell type fractions and 
cell type expression profiles across thousands of genes. 
In more recent years, single-cell RNA sequencing (scRNA-
seq) approaches have been embraced as a means of 
characterizing cell type composition and gene expression 
at the single-cell level. However, scRNA-seq is limited by 
sample preparation artifacts, including dissociation-induced 
distortions in cellular composition, and remains cost 
prohibitive for large-scale cellular profiling.11 Similarly, FFPE 
tissue specimens, which are collected as part of routine 
clinical care, cannot be dissociated into a cell suspension 
without disruption of cell type composition. 

Given these limitations for characterizing FF and FFPE 
samples, deconvolution algorithms for determining cell 
type abundances from bulk tissue expression profiles have 
gained traction.1,2,12-16 These methods enable dissection 
of cell-type-specific signals from bulk sequencing data. 
Comparative analyses of scRNA-seq, deconvolution of bulk 
expression data, and IHC revealed that deconvolution is 
free from artifacts arising from cell separation and tissue 
dissociation.17 Of these deconvolution methods, CIBERSORT 
and CIBERSORTx, have emerged as robust and accurate tools 
for determining cell type proportions from blood and tissue 
samples.3,17-28 In fact, CIBERSORTx was recently identified 
as one of the five fastest-growing software tools in the 
biosciences.29 

CiberMed further optimized and standardized CIBERSORTx 
with proprietary enhancements and validated the improved 
algorithms with different sequencing platforms and sample 
types, including FF and FFPE preservation states. CiberMed 
currently offers two algorithms by way of two flagship 
products within the iSort digital cytometry suite (Figure 1). 
iSort Fractions reliably determines cell subset abundance 
from bulk tissue or blood expression data and iSort HiRes 
infers cell-type-specific gene expression profiles from bulk 
tissue or blood expression data. 

Table 1. Comparison of cell profiling methods.

Software-Based Deconvolution Single-Cell RNA-Seq Flow Cytometry/CyTOF IHC

Throughput +++++ + ++ +++

Requires Tissue Dissociation No Yes Yes No

Artifacts Introduced by Dissociation No Yes Yes No

Workflow Simplicity +++++ + ++ ++++

Manual Data Analysis Required No Yes Yes Yes

Number of Cell Types/Cell Type Resolutions +++++ +++++ +++ +++
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Table 2. Human cell types quantified by blood mode (22 cell types) and 
tissue mode (25 cell types) of iSort Fractions.

Parent Subsets Cell Type Description

B cells
B cells naïve

B cells memory

Plasma cells Plasma cells

CD8 T cells T cells CD8

CD4 T cells

T cells CD4 naïve

T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

T cells regulatory (Tregs)

Gama delta T cells T cells gamma delta

NK cells
NK cells resting

NK cells activated

Monocytes and 
Macrophages

Monocytes

Macrophages M0

Macrophages M1

Macrophages M2

Dendritic cells
Dendritic cells resting

Dendritic cells activated

Mast cells
Mast cells resting

Mast cells activated

Eosinophils Eosinophils

PMNs Neutrophils

Fibroblasts

Endothelial cells

Epithelial cells

iSort Fractions ‘blood mode’ quantifies cell type abundances 
from bulk RNA-seq data by applying the well-established 
LM22 leukocyte gene signature matrix to distinguish 
22 human hematopoietic cell subsets. LM22 has been 
validated in pure leukocyte subset titrations, blood samples, 
and tumors from multiple cancer types. CiberMed’s iSort 
Fractions tissue mode uses the LM22 signature matrix plus 
tissue-specific signature profiles to quantify 25 cell types, 
including 22 immune subsets, fibroblasts, endothelial cells, 
and epithelial cells, from bulk tissue RNA-seq profiles of FF or 
FFPE biospecimens (see Table 2 for the complete list of cell 
subsets).3,27,30,47,48,49

In this application note, we demonstrate robust, accurate, 
and reproducible enumeration of cell subsets in solid tumor 
samples using iSort Fractions combined with the Agilent 
SureSelect target enrichment solution (Figure 2). The 
SureSelect CD CiberMed Tissue panel targets genes from 
the LM22 signature matrix along with additional genes for 
discriminating fibroblasts, endothelial cells, and epithelial 
cells with iSort Fractions tissue mode (see Table 3 for panel 
details). Four pairs of matched FF and FFPE samples from 
non-small cell lung cancer (NSCLC) tumor biopsies were 
included in the assessment. SureSelect XT HS2 RNA libraries 
were prepared in triplicate from total RNA extracted from 
each sample and enriched with the SureSelect CD CiberMed 
Tissue panel.

Bl
oo

d
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ue

SureSelect CD CiberMed Tissue SureSelect CD CiberMed Heme†

Intended Application Enumeration of 25 cell subsets (Table 2) with iSort Fractions Enumeration of 22 immune cell subsets (Table 2) with iSort Fractions

Sample Type FF, FFPE Whole blood, PBMCs

Signature Matrix LM22 (immune subsets) and TR4 (non-immune cell types) LM22 (immune cell types)

Number of Targets 1,423 genes 547 genes

Total Capture Size 5.7 Mb 1.8 Mb

Recommended Min Reads/Sample 2 M (1 M × 2, 150 bp) 500 k (250 k × 2, 150 bp)
†An application note detailing the Agilent SureSelect CD CiberMed Heme panel is available at www.agilent.com/cs/library/applications/ap-isort-sureselect-5994-6964en-agilent.pdf.

Table 3. Comparison of panel designs and the intended application for each.

https://www.agilent.com/cs/library/applications/ap-isort-sureselect-5994-6964en-agilent.pdf
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Across all 25 evaluable cell types, high concordance was 
observed between matched FF and FFPE samples. The 
concordance was markedly stronger for targeted RNA-seq 
with the SureSelect CD CiberMed Tissue panel than for whole-
transcriptome sequencing applied to the same samples 
(Figure 3). There was also high reproducibility between 
technical replicates (Figure 4). Because of several proprietary 
enhancements, we found that iSort Fractions outperformed 
CIBERSORTx for the enumeration of cell type composition 
(Figure 3). 

Notably, targeted enrichment with the SureSelect CD 
CiberMed Tissue panel reduced the sequencing requirement 
to only 2M (1M × 2) input reads per sample, as opposed 
to 40M (20M × 2) input reads per sample for whole-
transcriptome sequencing, a reduction of 20-fold. Together, 
these results underscore the accuracy, reliability, and cost-
effectiveness of the combined SureSelect/iSort assay for cell 
type abundance profiling from solid tissue samples.

Figure 2. End-to-end workflow supported by kitted reagents and instrumentation from Agilent and an integrated analysis solution from CiberMed.

Figure 1. Schematic of iSort algorithms for digital cytometry. iSort Fractions determines cell type proportions and iSort HiRes determines cell-type-specific gene 
expression profiles from bulk tissue expression data.
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Materials and methods
Samples 

Paired FF and FFPE tumor samples from four patients with 
NSCLC were procured from Proteogenex (Inglewood, CA, 
USA). Total RNA of the FF samples was extracted using the 
AllPrep DNA/RNA Micro Kit (Qiagen). The AllPrep DNA/RNA 
FFPE Kit (Qiagen) was used to extract the RNA of one FFPE 
sample (FFPE-1). The RNAstorm FFPE RNA extraction kit 
(Biotium, formerly Cell Data Sciences) was used to extract 
RNA from the remaining three FFPE samples. RNA quality 
was assessed using the Agilent RNA 6000 Pico kit (Agilent 
p/n 5067-1513) and RNA concentrations were determined 
using the Qubit RNA HS Assay kit (Thermo Fisher Scientific 
p/n Q32855). All FF samples had RIN > 6 whereas FFPE 
samples had DV200 values from 52 to 82.

Library preparation and target enrichment for targeted 
RNA sequencing 

Library preparation and targeted enrichment were performed 
using an Agilent Bravo NGS Workstation Option B following 
the Agilent SureSelect XT HS2 RNA system user guide 
G9993-90010.31 Agilent SureSelect XT HS2 RNA reagent 
kits G9991A and G9991B were employed to generate three 
technical replicate libraries per sample, each starting with 
an input of 30 ng total RNA. Agilent SureSelect XT HS2 RNA 
target enrichment kit part number G9994A was employed 
to enrich sample libraries with the SureSelect CD CiberMed 
Tissue panel.

Agilent SureDesign software was used to create the 
SureSelect CD CiberMed Tissue panel. Manual curation was 
performed to ensure full coverage of the coding region for 
every included gene. 

Enriched libraries were sequenced as 150 bp × 2 paired-end 
reads on Illumina NovaSeq 6000 instrument. Each sample 
was sequenced to approximately 50M (25M × 2) total reads 
to allow thorough performance assessment at varying 
depths of coverage.

Data processing

As input to iSort, RNA sequencing reads (in FASTQ format) 
were first summarized to gene expression values in 
transcripts per million (TPM). While this process can be 
accomplished using any standard mapping/alignment 
approach, for the data presented here, we used Salmon v1.932 
to map and quantify RNA-seq reads. The TPM values were 
then used as input to iSort Fractions v1.4, which determined 
the relative fractions of 25 immune subsets (Table 2) in each 
tissue sample. 

CiberMed software tools, iSort Fractions and iSort HiRes, are 
currently available as docker-containerized tools that can be 
run locally. iSort Fractions is offered also by way of a user-
friendly web interface run securely through AWS (Amazon 
Web Services) at https://isort.cibermed.com. For more details 
about the iSort digital cytometry suite, see the brochure at 
https://isort.cibermed.com/iSort_ProductsAndServices.pdf or 
contact CiberMed directly for questions at https://cibermed.
com/contact.

Performance evaluation

The accuracy of iSort Fractions was evaluated using 
Spearman rho, Pearson r, and root mean squared error 
(RMSE) to quantify the concordance of estimated cell type 
proportions, both within and between paired FF and FFPE 
samples. 

Read titration analysis

To determine the impact of the number of reads per sample 
on deconvolution accuracy and reproducibility, paired reads 
were randomly sampled to 5M, 2M, 1M, 500k, 100k, and 10k 
effective reads per sample. Effective reads are defined as the 
number of reads mapped “on-target” to the genes included 
in the SureSelect CD CiberMed Tissue panel. Input reads are 
calculated as [minimum effective reads]/[on-target map rate].
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Results
All RNA-seq data generated in this study passed internal 
quality control requirements. 

Accuracy

Four pairs of matched FF and FFPE samples, derived 
from NSCLC tumor biopsies, with three replicates each, 
were analyzed using iSort Fractions tissue mode, which 
quantifies 25 cell types, including 22 hematopoietic subsets 
and three non-immune cell types: fibroblast, endothelial, 
and epithelial cells. 

Figure 3 summarizes the concordance of iSort Fractions 
results between FF and FFPE samples for 25 cell types (top) 
and 23 cell types (bottom) with the latter excluding fibroblasts 
and epithelial cells to better visualize the 0 to 10% fractional 
abundance range. While performance gains can be seen for 
iSort over CIBERSORTx  (Figure 3b versus Figure 3a), targeted 
sequencing with the SureSelect CD CiberMed Tissue panel 
substantially outperformed whole transcriptome sequencing 
applied to the same samples (Figure 3c versus Figure 3b). 
These data indicate that targeted digital cytometry with 
SureSelect and iSort can overcome FFPE-related distortions 
to enable reliable cell profiling in fixed tissue specimens
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Figure 3. Scatterplots of cell type fractions determined by deconvolution of paired FF (y-axis) and FFPE (x-axis) bulk tumor expression profiles (n = 4 pairs); 
comparing (a) whole-transcriptome sequencing data analyzed by CIBERSORTx, (b) whole-transcriptome sequencing data analyzed by iSort Fractions, and (c) 
Agilent SureSelect CD CiberMed Tissue panel data analyzed by iSort Fractions. Results are shown for all 25 evaluable cell types (top) and 23 cell types (bottom) to 
expand the lower range of fractional abundances (0 to 10%). Each point represents a sample colored by cell type.
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Figure 4 summarizes the sample-level concordance between 
FF and FFPE cell type fractions. The SureSelect CD CiberMed 
Tissue panel outperformed whole-transcriptome sequencing 
for all four samples.

Reproducibility 

To assess reproducibility, RNA from all samples was 
processed and sequenced in triplicate and the concordance 
of iSort Fractions results across technical replicates was 
evaluated. All pairwise comparisons across the three 
replicates demonstrated strong reproducibility, with nearly 
perfect correlations obtained for all samples (Figure 5). 
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Figure 4. Box plots summarizing sample-level concordance of cell type fractions from paired FF and FFPE NSCLC specimens, analyzed by sample pair 
across 23 cell types and stratified by sequencing assay (Agilent SureSelect CD CiberMed Tissue panel versus whole-transcriptome sequencing). Fibroblasts 
and epithelial cells were excluded to focus on cell types in the range of 0 to 10% fractional abundance. Concordance was evaluated by (a) root mean squared 
error (RMSE), (b) Spearman rho, and (c) Pearson r. Statistical significance was determined with a two-sided paired t-test. All results were obtained using iSort 
Fractions tissue mode.
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Figure 5. Scatterplots comparing iSort Fractions results between sequencing replicates, shown for (a) four FF samples and (b) four FFPE tumor samples. Each 
data point represents a sample colored by cell type. The Agilent SureSelect CD CiberMed Tissue panel was applied to all samples.
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Sequencing requirement

Samples were sequenced to an average of 50M (25M × 2) 
reads for the SureSelect CD CiberMed Tissue panel.  
To determine the minimum number of reads needed per 
sample without compromising performance, we performed a 
titration experiment. In this experiment, the number of effective 
reads per sample was down-sampled to predefined quantities 
before running iSort Fractions (where “effective reads” denotes 
on-target reads only). Figure 6 summarizes the concordance 
between FF and FFPE cell type fractions for all three replicates 
using pre-determined numbers of effective reads. All three 
replicates maintained accurate and stable performance down 
to 1M (500k × 2) effective reads (Figure 6). Figure 7 shows all 
data points from Replicate 1 before and after down-sampling 
to 1M (500k × 2) effective reads.

Based on these data, when using the SureSelect CD CiberMed 
Tissue panel, the total number of required input reads is 
expected to range from approximately 1.3M per sample 
(assuming a 75% on-target mapping rate) to approximately 
2M per sample (assuming a 50% on-target rate). Therefore, a 
conservative projection of 2M (1M × 2) total input reads per 
sample should be sufficient. With the recommended input of 
at least 40M (20M × 2) reads for iSort Fractions from whole-
transcriptome sequencing, the SureSelect CD CiberMed 
Tissue panel offers a 20-fold reduction in sequencing costs 
while achieving superior performance. 

Figure 6. Impact of reads per sample on the concordance between FF and FFPE cell type proportions determined by iSort Fractions. “All” denotes all evaluable 
reads per sample. The Agilent SureSelect CD CiberMed Tissue panel maintained stable performance down to 1M (500k × 2) effective (“on-target”) reads per 
sample for all three replicates. Because Pearson r and RMSE are heavily driven by abundant fibroblasts and epithelial cells, they are shown without these two cell 
types. RMSE, root mean squared error.
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Figure 7. Impact of reads per sample on the concordance between cell type fractions in paired FF and FFPE samples, comparing (a) all evaluable reads per 
sample (no down-sampling) with (b) 1M (500k × 2) effective reads per sample (on-target reads per sample). The results are shown for all 25 cell types (top) and 23 
cell types (bottom), with the latter expanding the fractional abundance range between 0 and 15%. Each data point denotes a sample colored by cell type. Results 
were calculated using the Agilent SureSelect CD CiberMed Tissue panel applied to four matching pairs of FF (y-axis) and FFPE (x-axis) tumor specimens.
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Conclusion
In this application note, we describe the performance 
characteristics of the SureSelect CD Tissue panel for profiling 
both FF and FFPE tissue samples with iSort, a state-of-the-art 
software solution for digital cytometry offered by CiberMed. 
There are several applications that would benefit from the 
enhanced robustness, accuracy, and cost-effectiveness 
of this new joint assay for cytometry by sequencing. 
These include routine and translational tissue analysis,35 
retrospective characterization of bulk tissue expression data 
to derive new insights into cellular composition,1 and large-
scale validation of sequencing analyses.36 Other applications 
include the general assessment of cell type composition 
under diverse physiological and pathological conditions, 
all without the need for antibodies, fresh specimens, viable 
material, or millions of cells.

As shown previously, by comparing FFPE samples to a 
matched FF reference, the methodology is robust to FFPE 
artifacts and recovers the cell type abundance profile of 
matched references. Moreover, the Agilent SureSelect CD 
Tissue panel substantially outperforms whole-transcriptome 
profiling with potential to greatly reduce sequencing cost. 

The utility of the core iSort methodology has been 
demonstrated in different tissues and various cancer 
types.27,30,47,48 It has also been demonstrated in multiple 
other contexts, including immuno-oncology,37,38 organ 
transplantation,39 cardiology,40 Crohn’s disease,30 and neonatal 
sepsis.41 The ability to deconvolve alternative genomic data 
types, including methylation and proteomic profiles, has 
also been demonstrated.19,42 Furthermore, iSort has been 
analytically validated for whole blood samples and fresh, 
frozen, and fixed tumor specimens.27,30 The core algorithm 
underlying iSort has become the standard methodology for 
deconvolution in large cancer studies and datasets, such as 
The Cancer Genome Atlas (TCGA), and is being applied in 
clinical trials.43-46 Given the performance gains demonstrated 
here, the SureSelect/iSort assay for digital cytometry 
promises to facilitate many exciting and impactful future 
applications.

References
1.	 Thorsson, V.; Gibbs, D. L.; Brown, S. D.; Wolf, D.; Bortone, 

D. S.; Yang, T. H. O.; Porta-Pardo, E.; Gao, G. F.; Plaisier, 
C. L.; Eddy, J. A.; et al. The Immune Landscape of 
Cancer. Immunity. 2018, 48 (4), P812-830. https://doi.
org/10.1016/j.immuni.2018.03.023.

2.	 Farc, O.; Cristea, V. An Overview of the Tumor 
Microenvironment, from Cells to Complex Networks 
(Review). Exp. Ther. Med. 2020, 21 (1). https://doi.
org/10.3892/etm.2020.9528

3.	 Newman, A. M.; Liu, C. L.; Green, M. R.; Gentles, A. J.; 
Feng, W.; Xu, Y.; Hoang, C. D.; Diehn, M.; Alizadeh, A. 
A. Robust Enumeration of Cell Subsets from Tissue 
Expression Profiles. Nat. Methods 2015, 12 (5), 453–
457. https://doi.org/10.1038/nmeth.3337.

4.	 Gentles, A. J.; Newman, A. M.; Liu, C. L.; Bratman, S. V.; 
Feng, W.; Kim, D.; Nair, V. S.; Xu, Y.; Khuong, A.; Hoang, 
C. D.; et al. The Prognostic Landscape of Genes and 
Infiltrating Immune Cells across Human Cancers. Nat. 
Med. 2015, 21 (8), 938–945. https://doi.org/10.1038/
nm.3909.

5.	 Bentham, R.; Litchfield, K.; Watkins, T. B. K.; Lim, E. L.; 
Rosenthal, R.; Martínez-Ruiz, C.; Hiley, C. T.; Bakir, M. A.; 
Salgado, R.; Moore, D. A.; et al. TRACERx Consortium. 
Using DNA Sequencing Data to Quantify T Cell Fraction 
and Therapy Response. Nature 2021, 597 (7877), 
555–560. https://doi.org/10.1038/s41586-021-03894-
5.

6.	 Herold, N. C.; Mitra, P. Immunophenotyping; StatPearls 
Publishing, 2023.

7.	 Alfonso, B.-F.; Al-Rubeai, M. Flow Cytometry. In 
Comprehensive Biotechnology; Elsevier, 2011; pp 
559–578.

8.	 Dixon, A. R.; Bathany, C.; Tsuei, M.; White, J.; Barald, K. 
F.; Takayama, S. Recent Developments in Multiplexing 
Techniques for Immunohistochemistry. Expert Rev. 
Mol. Diagn. 2015, 15 (9), 1171–1186. https://doi.org/10
.1586/14737159.2015.1069182

9.	 Rashid, R.; Gaglia, G.; Chen, Y.-A.; Lin, J.-R.; Du, Z.; 
Maliga, Z.; Schapiro, D.; Yapp, C.; Muhlich, J.; Sokolov, 
A.; et al. Highly Multiplexed Immunofluorescence 
Images and Single-Cell Data of Immune Markers in 
Tonsil and Lung Cancer. Sci. Data 2019, 6 (1), 1–10. 
https://doi.org/10.1038/s41597-019-0332-y.

https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.3892/etm.2020.9528
https://doi.org/10.3892/etm.2020.9528
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41586-021-03894-5
https://doi.org/10.1038/s41586-021-03894-5
https://doi.org/10.1586/14737159.2015.1069182
https://doi.org/10.1586/14737159.2015.1069182
https://doi.org/10.1038/s41597-019-0332-y


11

10.	 Palit, S.; Heuser, C.; de Almeida, G. P.; Theis, F. J.; 
Zielinski, C. E. Meeting the Challenges of High-
Dimensional Single-Cell Data Analysis in Immunology. 
Front. Immunol. 2019, 10. https://doi.org/10.3389/
fimmu.2019.01515.

11.	 Lähnemann, D.; Köster, J.; Szczurek, E.; McCarthy, D. J.; 
Hicks, S. C.; Robinson, M. D.; Vallejos, C. A.; Campbell, 
K. R.; Beerenwinkel, N.; Mahfouz, A.; et al. Eleven Grand 
Challenges in Single-Cell Data Science. Genome Biol. 
2020, 21 (1). https://doi.org/10.1186/s13059-020-
1926-6.

12.	 Aran, D.; Hu, Z.; Butte, A. J. xCell: Digitally Portraying 
the Tissue Cellular Heterogeneity Landscape. Genome 
Biol. 2017, 18 (1). https://doi.org/10.1186/s13059-017-
1349-1.

13.	 Racle, J.; Gfeller, D. EPIC: A Tool to Estimate the 
Proportions of Different Cell Types from Bulk Gene 
Expression Data. In Bioinformatics for Cancer 
Immunotherapy; Springer US: New York, NY, 2020; Vol. 
2120, pp 233–248.

14.	 Li, B.; Li, T.; Liu, J. S.; Liu, X. S. Computational 
Deconvolution of Tumor-Infiltrating Immune 
Components with Bulk Tumor Gene Expression Data. In 
Bioinformatics for Cancer Immunotherapy; Springer US: 
New York, NY, 2020; Vol. 2120, pp 249–262.

15.	 Becht, E.; Giraldo, N. A.; Lacroix, L.; Buttard, B.; Elarouci, 
N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-
Fridman, C.; Fridman, W. H.; de Reyniès, A. Estimating 
the Population Abundance of Tissue-Infiltrating 
Immune and Stromal Cell Populations Using Gene 
Expression. Genome Biol. 2016, 17 (1). https://doi.
org/10.1186/s13059-016-1070-5.

16.	 Shen-Orr, S. S.; Tibshirani, R.; Butte, A. J. Gene 
Expression Deconvolution in Linear Space. Nat. 
Methods 2012, 9 (1), 9–9. https://doi.org/10.1038/
nmeth.1831.

17.	 Newman, A. M.; Steen, C. B.; Liu, C. L.; Gentles, A. 
J.; Chaudhuri, A. A.; Scherer, F.; Khodadoust, M. S.; 
Esfahani, M. S.; Luca, B. A.; Steiner, D.; et al. Determining 
Cell Type Abundance and Expression from Bulk Tissues 
with Digital Cytometry. Nat. Biotechnol. 2019, 37 (7), 
773–782. https://doi.org/10.1038/s41587-019-0114-2.

18.	 Bionetworks, S. Synapse. Synapse.org. https://www.
synapse.org/ (accessed 2023-10-30).

19.	 Nadel, B. B.; Oliva, M.; Shou, B. L.; Mitchell, K.; Ma, F.; 
Montoya, D. J.; Mouton, A.; Kim-Hellmuth, S.; Stranger, 
B. E.; Pellegrini, M.; Mangul, S. Systematic Evaluation 
of Transcriptomics-Based Deconvolution Methods and 
References Using Thousands of Clinical Samples. Brief. 
Bioinform. 2021, 22 (6). https://doi.org/10.1093/bib/
bbab265.

20.	 Avila Cobos, F.; Alquicira-Hernandez, J.; Powell, J. E.; 
Mestdagh, P.; De Preter, K. Benchmarking of Cell Type 
Deconvolution Pipelines for Transcriptomics Data. 
Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/
s41467-020-19015-1.

21.	 Le, T.; Aronow, R. A.; Kirshtein, A.; Shahriyari, L. A Review 
of Digital Cytometry Methods: Estimating the Relative 
Abundance of Cell Types in a Bulk of Cells. Brief. 
Bioinform. 2021, 22 (4). https://doi.org/10.1093/bib/
bbaa219.

22.	 Chen, B.; Khodadoust, M. S.; Liu, C. L.; Newman, A. 
M.; Alizadeh, A. A. Profiling Tumor Infiltrating Immune 
Cells with CIBERSORT. In Methods in Molecular Biology; 
Springer New York: New York, NY, 2018; Vol. 1711, pp 
243–259.

23.	 Sutton, G. J.; Poppe, D.; Simmons, R. K.; Walsh, K.; 
Nawaz, U.; Lister, R.; Gagnon-Bartsch, J. A.; Voineagu, I. 
Comprehensive Evaluation of Deconvolution Methods 
for Human Brain Gene Expression. Nat. Commun. 2022, 
13 (1), 1–18. https://doi.org/10.1038/s41467-022-
28655-4.

24.	 Breen, M. S.; Ozcan, S.; Ramsey, J. M.; Wang, Z.; 
Ma’ayan, A.; Rustogi, N.; Gottschalk, M. G.; Webster, M. 
J.; Weickert, C. S.; Buxbaum, J. D.; Bahn, S. Temporal 
Proteomic Profiling of Postnatal Human Cortical 
Development. Transl. Psychiatry 2018, 8 (1), 1–14. 
https://doi.org/10.1038/s41398-018-0306-4.

25.	 Li, L.; Shen, L.; Ma, J.; Zhou, Q.; Li, M.; Wu, H.; Wei, 
M.; Zhang, D.; Wang, T.; Qin, S.; Xing, T. Evaluating 
Distribution and Prognostic Value of New Tumor-
Infiltrating Lymphocytes in HCC Based on a scRNA-Seq 
Study with CIBERSORTx. Front. Med. (Lausanne) 2020, 
7. https://doi.org/10.3389/fmed.2020.00451.

26.	 Newman, A.M.; Gulati, S.G.; Clarke, M.F.; Sikandar, 
S.S. Methods Utilizing Single Cell Genetic Data for 
Cell Population Analysis and Applications Thereof. 
US202003700112 A1, November 26, 2020. 

https://doi.org/10.3389/fimmu.2019.01515
https://doi.org/10.3389/fimmu.2019.01515
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/nmeth.1831
https://doi.org/10.1038/nmeth.1831
https://doi.org/10.1038/s41587-019-0114-2
https://www.synapse.org/
https://www.synapse.org/
https://doi.org/10.1093/bib/bbab265
https://doi.org/10.1093/bib/bbab265
https://doi.org/10.1038/s41467-020-19015-1
https://doi.org/10.1038/s41467-020-19015-1
https://doi.org/10.1093/bib/bbaa219
https://doi.org/10.1093/bib/bbaa219
https://doi.org/10.1038/s41467-022-28655-4
https://doi.org/10.1038/s41467-022-28655-4
https://doi.org/10.1038/s41398-018-0306-4
https://doi.org/10.3389/fmed.2020.00451


12

27.	 Newman, A. M.; Nakao, A.; Li, K.; Liu, C.-L.; Mathi, 
K.; Sigal, N.; Maecker, H.; Diehn, M.; Alizadeh, A. A. 
Analytical Validation of Digital Cytometry (iSort) for 
Leukocyte Enumeration Using Stored Blood. J. Clin. 
Oncol. 2020, 38 (15_suppl), 3542–3542. https://doi.
org/10.1200/jco.2020.38.15_suppl.3542.

28.	 Chakravarthy, A.; Furness, A.; Joshi, K.; Ghorani, E.; 
Ford, K.; Ward, M. J.; King, E. V.; Lechner, M.; Marafioti, 
T.; Quezada, S. A.; Thomas, G. J.; Feber, A.; Fenton, T. 
R. Pan-Cancer Deconvolution of Tumour Composition 
Using DNA Methylation. Nat. Commun. 2018, 9 (1). 
https://doi.org/10.1038/s41467-018-05570-1.

29.	 Hutson, M. Hunting for the Best Bioscience Software 
Tool? Check This Database. Nature 2023. https://doi.
org/10.1038/d41586-023-00053-w.

30.	 Chen, H.; Chen, C.; Yuan, X.; Xu, W.; Yang, M.-Q.; Li, 
Q.; Shen, Z.; Yin, L. Identification of Immune Cell 
Landscape and Construction of a Novel Diagnostic 
Nomogram for Crohn’s Disease. Front. Genet. 2020, 11. 
https://doi.org/10.3389/fgene.2020.00423.

31.	 A, V. Agilent.com. https://www.agilent.com/cs/library/
usermanuals/public/G9993-90010.pdf (accessed 
2023-10-30).

32.	 Patro, R.; Duggal, G.; Love, M. I.; Irizarry, R. A.; Kingsford, 
C. Salmon Provides Fast and Bias-Aware Quantification 
of Transcript Expression. Nat. Methods 2017, 14 (4), 
417–419. https://doi.org/10.1038/nmeth.4197.

33.	 Dobin, A.; Davis, C. A.; Schlesinger, F.; Drenkow, J.; 
Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, 
T. R. STAR: Ultrafast Universal RNA-Seq Aligner. 
Bioinformatics 2013, 29 (1), 15–21. https://doi.
org/10.1093/bioinformatics/bts635.

34.	 Li, B.; Dewey, C. N. RSEM: Accurate Transcript 
Quantification from RNA-Seq Data with or without a 
Reference Genome. BMC Bioinformatics 2011, 12 (1). 
https://doi.org/10.1186/1471-2105-12-323.

35.	 Orange, D. E.; Yao, V.; Sawicka, K.; Fak, J.; Frank, M. 
O.; Parveen, S.; Blachere, N. E.; Hale, C.; Zhang, F.; 
Raychaudhuri, S.; et al. RNA Identification of PRIME 
Cells Predicting Rheumatoid Arthritis Flares. N. Engl. J. 
Med. 2020, 383 (3), 218–228. https://doi.org/10.1056/
nejmoa2004114.

36.	 Gohil, S. H.; Iorgulescu, J. B.; Braun, D. A.; Keskin, 
D. B.; Livak, K. J. Applying High-Dimensional 
Single-Cell Technologies to the Analysis of Cancer 
Immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18 (4), 
244–256. https://doi.org/10.1038/s41571-020-
00449-x.

37.	 Nabet, B. Y.; Esfahani, M. S.; Moding, E. J.; Hamilton, 
E. G.; Chabon, J. J.; Rizvi, H.; Steen, C. B.; Chaudhuri, 
A. A.; Liu, C. L.; Hui, A. B.; et al. Noninvasive Early 
Identification of Therapeutic Benefit from Immune 
Checkpoint Inhibition. Cell 2020, 183 (2), 363-376.e13. 
https://doi.org/10.1016/j.cell.2020.09.001.

38.	 Lozano, A. X.; Chaudhuri, A. A.; Nene, A.; Bacchiocchi, 
A.; Earland, N.; Vesely, M. D.; Usmani, A.; Turner, B. E.; 
Steen, C. B.; Luca, B. A.; et al. T Cell Characteristics 
Associated with Toxicity to Immune Checkpoint 
Blockade in Patients with Melanoma. Nat. Med. 2022, 
28 (2), 353–362. https://doi.org/10.1038/s41591-021-
01623-z.

39.	 Huang, S.; Chen, H.; Guo, Z.; He, X. A Comprehensive 
Cibersort Study and Gene-Expression Based 
Transcriptomic Analysis on Patterns of Immune 
Infiltration in Ischemia-Reperfusion Injury Livers 
Post Liver Transplantation. Transplantation 2020, 
104 (S3), S195–S195. https://doi.org/10.1097/01.
tp.0000699368.56252.17.

40.	 Journal-of-cardiology.com. https://www.journal-of-
cardiology.com/article/S0914-5087(20)30289-6/
fulltext (accessed 2023-10-30).

41.	 Jiang, Z.; Luo, Y.; Wei, L.; Gu, R.; Zhang, X.; Zhou, 
Y.; Zhang, S. Bioinformatic Analysis and Machine 
Learning Methods in Neonatal Sepsis: Identification 
of Biomarkers and Immune Infiltration. Biomedicines 
2023, 11 (7), 1853. https://doi.org/10.3390/
biomedicines11071853.

42.	 Voss, M. H.; Buros Novik, J.; Hellmann, M. D.; Ball, M.; 
Hakimi, A. A.; Miao, D.; Margolis, C.; Horak, C.; Wind-
Rotolo, M.; De Velasco, G.; et al. Correlation of Degree 
of Tumor Immune Infiltration and Insertion-and-
Deletion (Indel) Burden with Outcome on Programmed 
Death 1 (PD1) Therapy in Advanced Renal Cell Cancer 
(RCC). J. Clin. Oncol. 2018, 36 (15_suppl), 4518–4518. 
https://doi.org/10.1200/jco.2018.36.15_suppl.4518.

https://doi.org/10.1200/jco.2020.38.15_suppl.3542
https://doi.org/10.1200/jco.2020.38.15_suppl.3542
https://doi.org/10.1038/s41467-018-05570-1
https://doi.org/10.1038/d41586-023-00053-w
https://doi.org/10.1038/d41586-023-00053-w
https://doi.org/10.3389/fgene.2020.00423
https://www.agilent.com/cs/library/usermanuals/public/G9993-90010.pdf
https://www.agilent.com/cs/library/usermanuals/public/G9993-90010.pdf
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1056/nejmoa2004114
https://doi.org/10.1056/nejmoa2004114
https://doi.org/10.1038/s41571-020-00449-x
https://doi.org/10.1038/s41571-020-00449-x
https://doi.org/10.1016/j.cell.2020.09.001
https://doi.org/10.1038/s41591-021-01623-z
https://doi.org/10.1038/s41591-021-01623-z
https://doi.org/10.1097/01.tp.0000699368.56252.17
https://doi.org/10.1097/01.tp.0000699368.56252.17
https://www.journal-of-cardiology.com/article/S0914-5087(20)30289-6/fulltext
https://www.journal-of-cardiology.com/article/S0914-5087(20)30289-6/fulltext
https://www.journal-of-cardiology.com/article/S0914-5087(20)30289-6/fulltext
https://doi.org/10.3390/biomedicines11071853
https://doi.org/10.3390/biomedicines11071853
https://doi.org/10.1200/jco.2018.36.15_suppl.4518


43.	 Metzger Filho, O.; Stover, D. G.; Asad, S.; Ansell, P. J.; 
Watson, M.; Loibl, S.; Geyer, C. E.; O’Shaughnessy, J.; 
Untch, M.; Rugo, H. S.; et al. Immunophenotype and 
Proliferation to Predict for Response to Neoadjuvant 
Chemotherapy in TNBC: Results from BrighTNess 
Phase III Study. J. Clin. Oncol. 2019, 37 (15_suppl), 
510–510. https://doi.org/10.1200/jco.2019.37.15_
suppl.510.

44.	 CTG labs - NCBI. Clinicaltrials.gov. https://clinicaltrials.
gov/study/NCT03979508 (accessed 2023-10-30).

45.	 Clinicaltrials.gov. https://classic.clinicaltrials.gov/
ProvidedDocs/10/NCT03955510/Prot_000.pdf 
(accessed 2023-10-30).

46.	 Medjebar, S.; Richard, C.; Fumet, J.-D.; Malo, J.; Elkrief, 
A.; Blais, N.; Tehfe, M.; Florescu, M.; Boidot, R.; Truntzer, 
C.; et al. Angiotensin-Converting Enzyme Inhibitor 
Prescription Is Associated with Decreased Progression-
Free Survival (PFS) and Overall Survival (OS) in 
Patients with Lung Cancers Treated with PD-1/PD-L1 
Immune Checkpoint Blockers. J. Clin. Oncol. 2019, 37 
(15_suppl), e20512–e20512. https://doi.org/10.1200/
jco.2019.37.15_suppl.e20512

www.agilent.com

For Research Use Only. Not for use in diagnostic procedures. 
PR7001-2303

This information is subject to change without notice.

© Agilent Technologies, Inc. 2024 
Published in the USA, March 20, 2024 
5994-7248EN

47.	 Steen, C. B.; Liu, C. L.; Alizadeh, A. A.; Newman, A. M. 
Profiling Cell Type Abundance and Expression in Bulk 
Tissues with CIBERSORTx. Methods in Molecular 
Biology 2020, 135–157. https://doi.org/10.1007/978-1-
0716-0301-7_7

48.	 Craven, K. E.; Gökmen-Polar, Y.; Badve, S. S. CIBERSORT 
Analysis of TCGA and METABRIC Identifies Subgroups 
with Better Outcomes in Triple Negative Breast Cancer. 
Scientific Reports 2021, 11 (1). https://doi.org/10.1038/
s41598-021-83913-7

49.	 Newman, A.M. et al, J. Clinical Oncology, 38, Supp. 
e15243 (2020) https://ascopubs.org/doi/abs/10.1200/
JCO.2020.38.15_suppl.e15243

https://doi.org/10.1200/jco.2019.37.15_suppl.510
https://doi.org/10.1200/jco.2019.37.15_suppl.510
https://clinicaltrials.gov/study/NCT03979508 (accessed 2023-10-30)
https://clinicaltrials.gov/study/NCT03979508 (accessed 2023-10-30)
https://classic.clinicaltrials.gov/ProvidedDocs/10/NCT03955510/Prot_000.pdf
https://classic.clinicaltrials.gov/ProvidedDocs/10/NCT03955510/Prot_000.pdf
https://doi.org/10.1200/jco.2019.37.15_suppl.e20512
https://doi.org/10.1200/jco.2019.37.15_suppl.e20512
https://doi.org/10.1007/978-1-0716-0301-7_7
https://doi.org/10.1007/978-1-0716-0301-7_7
https://doi.org/10.1038/s41598-021-83913-7
https://doi.org/10.1038/s41598-021-83913-7
https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.e15243
https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.e15243

