

使用配备 Agilent Hydro 惰性离子源的 Agilent 8890/5977C GC/MS 和氢气 载气分析大麻中的萜烯

作者

Samuel P. Haddad, Saurabh U. Patel, Jessica L. Westland 安捷伦科技有限公司

摘要

本应用简报介绍了使用气质联用系统 (GC/MS),以氢气作为载气对大麻中的萜烯进行分析。GC/MS 已成为表征各种市售大麻品种的味道和气味的重要工具。利用配备新型电子轰击电离 (EI) 离子源(即 Agilent Hydro 惰性离子源)的 Agilent 8890 气相色谱和 5977C 单四极杆气质联用系统对 40 种可通过色谱分离的萜烯进行分析。优化后的方法提供了与使用氦气时相似的洗脱曲线,并且在各种化合物的校准范围内具有出色的线性, $R^2 \geq 0.99$ 。所有目标分析物的准确度均在 92.5%—115.9% 之间,所有精密度相对标准偏差 (%RSD) 均低于 2.7%。对于希望使用更具可持续性的氢气载气进行萜烯分析的实验室,配备 9 mm 提取透镜的 Hydro 惰性离子源和小内径 (0.18 mm) 色谱柱能够实现该目标,并获得同样出色的性能。

前言

萜烯是各个品种的大麻中具有独特风味和香气的一类化合物。 通常使用 GC/MS 并以氦气为首选载气对商业化大麻品种的风 味和香气进行表征。但频繁的氦气短缺问题和不断攀升的成本 增加了在应用中使用氢气作为载气的需求。本应用简报重点介 绍了在单四极杆气质联用系统上使用氢气作为气相色谱载气, 在选择性离子监测 (SIM) 模式下使用液体进样对萜烯进行分析。

用氢气进行 GC/MS 分析时,需要考虑以下几个因素。首先,氢气是一种反应性气体,可能会在进样口、色谱柱中引起化学反应,有时还会在 MS EI 离子源中引起化学反应,从而改变分析结果。为了解决 MS 离子源的潜在问题,使用了 Agilent Hydro 惰性离子源。更多信息可参见 Agilent Hydro 惰性离子源技术概述^[1]。其次,对于 GC/MS 应用,将载气换为氢气时,可能需要对气相色谱仪和质谱仪的硬件进行更换。《安捷伦载气由氦气转换为氢气的用户指南》^[2] 详细介绍了将载气由氦气转换为氢气的步骤。最后,建议在使用易燃易爆气体时,实验室应确保在气体操作和使用过程中的安全性。有关安全使用氢气的更多信息可参见《安捷伦氢气安全手册》^[3] 和《安捷伦气相色谱系统的氢气安全指南》^[4]。

实验部分

化学品与试剂

萜烯混标 CAN-TERP-MIX1H 和 CAN-TERP-MIX2H 各含有 21 种萜烯,购自 SPEX CertiPrep (Metuchen, NJ, US)。内标 (ISTD)、2-氟联苯和乙酸乙酯(纯度 99.9%)购自 Sigma-Aldrich (St. Louis, MO, US)。用于校准的测试基质冷榨火麻籽油(空白基质)来自 Nutiva (Richmond, CA, US)。各种品种的磨碎大麻花朵粉来自密西西比大学。配制 8 个校准浓度:3.83、7.66、15.32、30.64、61.28、122.55、245.10 和 490.20 μg/mL。两种混标中均存在茨醇、小茴香酮和樟脑,并形成具有相同保留时间的外消旋混合物。茨醇和小茴香酮的高浓度为980.40 μg/mL,樟脑的高浓度为 1470.60 μg/mL。

仪器

GC/MS 方法参数遵循安捷伦应用简报 5994-2032EN^{ISI} 中所述的方法,对氢气载气进行了一些修改,并使用 Agilent 8890 气相色谱系统。气相色谱仪器参数见表 1,MS 仪器参数见表 2,SIM 时间段参数见表 3。表 4 列出了本实验使用的消耗品。

表 1. 萜烯分析 GC 和反吹条件

Agilent 8890 气相色谱系统、自动进样器和样品盘						
进样量	1.0 µL					
进样口	EPC 分流/不分流					
模式	分流					
分流比	150:1					
隔垫吹扫流速	标准,3 mL/min					
进样口温度	250 °C					
	初始: 75°C (保持 1 min)					
	温阶 1: 以 10 °C/min 升至 125 °C					
柱温箱	温阶 2: 以 3 °C/min 升至 145 °C					
	温阶 3: 以 10 °C/min 升至 165 °C					
	温阶 4: 以 175 °C/min 升至 250 °C(保持 6.2 min)					
总运行时间	22.75 min					
色谱柱 1	Agilent J&W DB-Select 624, 20 m × 0.18 mm, 1.0 μm					
流量控制模式	恒流,0.60 mL/min					
色谱柱 2	Agilent J&W DB-Select 624, 20 m × 0.18 mm, 1.0 μm					
流量控制模式	恒流,0.75 mL/min					
PSD 吹扫流速	3 mL/min					
	Agilent 8890 GC 反吹参数					
进样口压力	2 psi					
反吹压力	50 psi					
死体积	5					
反吹时间	1.47 min					

表 2. 萜烯分析的 MS 条件

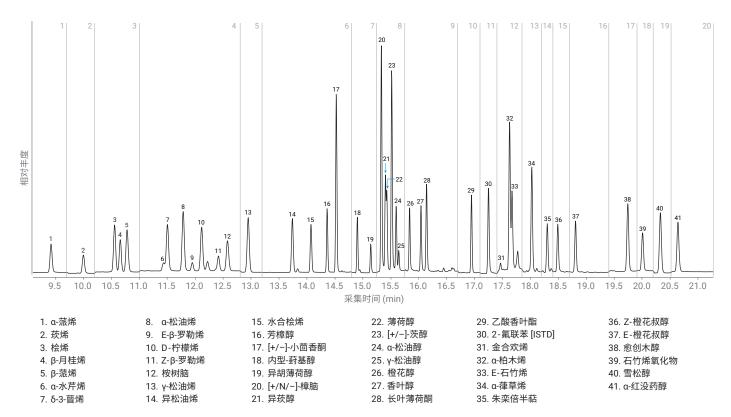
Agilent 5977C MSD					
离子源	Agilent Hydro 惰性离子源				
提取透镜	9 mm				
传输线温度	260 °C				
离子源温度	300 °C				
四极杆温度	200 °C				
模式	SIM				
电子倍增器电压增益	可变				
溶剂延迟	9 min				
调谐文件	atune.u				

表 3. 用于萜烯分析的保留时间、时间段、EM 增益和 SIM 离子

目标分析物	保留时间 (min)	时间段	时间段起点	EM 增益因子	定量离子	定性离子1	定性离子 2
α-蒎烯	9.423	1	9.00	10	93	91	77
莰烯	9.998	2	9.70	10	93	107	136
桧烯	10.561	3	10.20	10	136	93	91
β-月桂烯	10.673	3			121	69	77
β-蒎烯	10.784	3			93	69	77
α-水芹烯	11.427	4	11.00	10	93	77	136
δ-3-蒈烯	11.507	4			93	77	121
α-松油烯	11.791	4			121	93	105
E-β-罗勒烯	11.947	4			93	91	79
D-柠檬烯	12.121	4			68	93	121
Ζ-β-罗勒烯	12.417	4			93	91	79
桉树脑	12.595	4			81	111	139
γ-松油烯	12.955	5	12.80	10	93	77	136
异松油烯	13.743	6	13.20	10	121	93	136
水合桧烯	14.085	6			71	121	139
芳樟醇	14.367	6			71	93	55
[±]-小茴香酮	14.533	6			81	69	152
内型-葑基醇	14.905	7	14.80	10	81	80	111
异胡薄荷醇	15.150	7			121	136	154
[+/N/-]-樟脑	15.338	8	15.25	10	152	81	108
异莰醇	15.410	8			95	110	121
薄荷醇	15.435	8			71	123	138
[±]-茨醇	15.520	8			95	110	121
α-松油醇	15.600	8			93	121	136
γ-松油醇	15.651	8			59	93	121
橙花醇	15.844	9	15.75	15	69	93	84
香叶醇	16.046	9			69	93	121
长叶薄荷酮	16.149	9			152	81	109
乙酸香叶酯	16.951	10	16.70	15	68	69	121
2-氟联苯 [ISTD]	17.256	11	17.10	10	172	171	170
金合欢烯	17.468	12	17.40	15	69	93	79
α-柏木烯	17.631	12			93	119	105
E-石竹烯	17.674	12			93	161	105
α-葎草烯	18.026	13	17.85	15	93	80	121
朱栾倍半萜	18.302	14	18.20	20	161	189	204
Z-橙花叔醇	18.497	15	18.40	20	69	81	121
E-橙花叔醇	18.813	16	18.70	20	69	81	121
愈创木醇	19.754	17	19.40	20	161	107	91
石竹烯氧化物	20.018	18	19.91	20	79	91	109
雪松醇	20.334	19	20.20	20	95	151	150
α-红没药醇	20.650	20	20.52	20	109	119	93

表 4. 在萜烯分析方法中使用的安捷伦消耗品及其货号。定制色谱柱可通过安捷伦定制气相色谱柱商店申请^{6]}

消耗品	描述	货号			
进样器进样针	蓝色系列自动进样器进样针,10 µL,固定式针头	G4513-80220			
进样口隔垫	高级绿色隔垫,不粘连,11 mm	5183-4759			
进样口衬管	通用超高惰性低压降进样口衬管	5190-2295			
样品瓶	螺口,棕色,带书写签,经认证,2 mL	5182-0716			
样品瓶盖	螺口,经认证,PTFE/白色硅橡胶隔垫	5182-0720			
色谱柱	色谱柱 J&W DB-Select 624 超高惰性柱, 20 m × 180 µm × 1.0 µm (数量: 2)				
进样口螺帽	色谱柱螺帽,带锁定环,手拧式	G3440-81011			
密封垫圈	15% 石墨/85% Vespel,适用于 0.1-0.25 mm 色谱柱	5181-3323			
MSD 螺帽	色谱柱螺帽,带锁定环,手拧式	G3440-81013			
钢质管线	GC 安装工具包,不锈钢	19199S			
GC/MS 离子源	用于 5977C 的 Hydro 惰性离子源全套组件	G7078-67930			


内标、校准标样和样品前处理

标准品和样品的处理遵循安捷伦应用简报 5994-2032EN^[5] 中所述的方法。可以按照安捷伦应用简报 5994-6007ZHCN^[7] 中所述,使用 Agilent PAL3 系列 II RTC 仪器自动进行所有标准品、校准标样和样品的处理。

结果与讨论

色谱分析、校准、准确度和精密度

图 1 为校准浓度 8 (490.20 μg/mL) 的 SIM 时间段色谱图。使用氢气载气时,得到的洗脱曲线与之前使用氦气时^[5,7] 得到的曲线类似。由于使用了氢气载气和小内径色谱柱,当前方法的运行时间从使用氦气时的 30 分钟缩短为使用氢气时的 23 分钟。请注意,使用氦气时建议使用 9 mm 提取透镜进行萜烯

图 1. 校准浓度 8 (490.20 µg/mL) 的 SIM 时间段色谱图

分析。Agilent Hydro 惰性离子源使用 9 mm 提取透镜作为氢气载气的标准配置。对于当前应用,仍然建议使用 9 mm 提取透镜。表 5 提供了三条独立校准曲线相关系数 (R^2) 、检出限

(LOD) 以及定量限 (LOQ)。所有 R^2 值均 > 0.99,表明配制的校准标样拟合性非常好。

表 5. 三条独立校准曲线的校准范围、相关系数 (R²)、LOD 和 LOQ。所有校准曲线均采用二次关系拟合和 1/x 加权。使用第一个校准点 (3.83 μ g/mL) 的 8 次重复进样和 Agilent MassHunter 软件内置计算功能确定 LOD 和 LOQ

目标分析物	校准范围 (μg/mL)	校准样品 1 (R²)	校准样品 2 (R²)	校准样品 3 (R²)	LOD (µg/mL)	LOQ (µg/mL)
α-蒎烯	3.83-490.20	0.9984	0.9973	0.9978	0.10	0.34
莰烯	3.83-490.20	0.9989	0.9985	0.9986	0.20	0.66
桧烯	3.83-490.20	0.9993	0.9989	0.9990	0.22	0.72
β-月桂烯	3.83-490.20	0.9992	0.9989	0.9990	0.25	0.82
β-蒎烯	3.83-490.20	0.9992	0.9989	0.9990	0.13	0.42
α-水芹烯	3.83-490.20	0.9993	0.9990	0.9991	0.23	0.76
δ-3-蒈烯	3.83-490.20	0.9991	0.9989	0.9991	0.15	0.51
α-松油烯	3.83-490.20	0.9985	0.9980	0.9984	0.14	0.45
E-β-罗勒烯	3.83-490.20	0.9997	0.9992	0.9993	0.17	0.57
D-柠檬烯	3.83-490.20	0.9996	0.9995	0.9992	0.25	0.83
Z-β-罗勒烯	3.83-490.20	0.9998	0.9991	0.9995	0.30	0.99
桉树脑	3.83-490.20	0.9994	0.9994	0.9994	0.27	0.91
γ-松油烯	3.83-490.20	0.9998	0.9996	0.9995	0.19	0.62
异松油烯	3.83-490.20	0.9995	0.9992	0.9988	0.12	0.40
水合桧烯	3.83-490.20	0.9994	0.9991	0.9992	0.21	0.69
芳樟醇	3.83-490.20	0.9992	0.9987	0.9990	0.18	0.61
[±]-小茴香酮	7.66-980.40	0.9994	0.9992	0.9992	0.20	0.68
内型-葑基醇	3.83-490.20	0.9993	0.9992	0.9992	0.28	0.92
异胡薄荷醇	3.83-490.20	0.9992	0.9990	0.9990	0.29	0.96
[+/N/-]-樟脑	11.49-1470.60	0.9993	0.9993	0.9992	0.25	0.83
异莰醇	3.83-490.20	0.9992	0.9994	0.9995	0.17	0.58
薄荷醇	3.83-490.20	0.9990	0.9991	0.9994	0.31	1.03
[±]-茨醇	7.66-980.40	0.9993	0.9993	0.9995	0.22	0.75
α-松油醇	3.83-490.20	0.9991	0.9993	0.9994	0.26	0.86
γ-松油醇	3.83-490.20	0.9994	0.9991	0.9988	0.33	1.10
橙花醇	3.83-490.20	0.9995	0.9998	0.9993	0.27	0.89
香叶醇	3.83-490.20	0.9995	0.9998	0.9991	0.23	0.77
长叶薄荷酮	3.83-490.20	0.9994	0.9993	0.9993	0.27	0.89
乙酸香叶酯	3.83-490.20	0.9994	0.9997	0.9996	0.32	1.05
金合欢烯	3.83-490.20	0.9991	0.9998	0.9997	0.28	0.93
α-柏木烯	3.83-490.20	0.9998	0.9994	0.9997	0.24	0.79
E-石竹烯	3.83-490.20	0.9998	0.9998	0.9997	0.24	0.79
α-葎草烯	3.83-490.20	0.9999	0.9999	0.9999	0.21	0.71
朱栾倍半萜	3.83-490.20	0.9995	0.9997	0.9999	0.33	1.12
Z-橙花叔醇	3.83-490.20	0.9992	0.9996	0.9997	0.21	0.71
E-橙花叔醇	3.83-490.20	0.9994	0.9995	0.9996	0.20	0.67
愈创木醇	3.83-490.20	0.9996	0.9994	0.9995	0.15	0.49
石竹烯氧化物	3.83-490.20	0.9998	0.9996	0.9997	0.34	1.13
雪松醇	3.83-490.20	0.9997	0.9996	0.9997	0.14	0.45
α-红没药醇	3.83-490.20	0.9996	0.9996	0.9995	0.28	0.95

表 6 显示了三个校准浓度下的准确度和精密度数据。所有准确度均在 92.5%-115.9% 之间,所有精密度 (RSD) 均低于 2.7%。校准、准确度和精密度数据与之前使用安捷伦应用简

报 5994-2032 $EN^{[S]}$ 中所述的氦气方法开展的研究 $^{[7]}$ 结果相似,甚至更为出色。

表 6. 校准浓度 3.83、30.64 和 245.10 μ g/mL 下的平均准确度 (n = 3) 和精密度 (% RSD, n = 5)

	:	平均准确度 (%, n =	3)	精密度 (% RSD, n = 5)			
目标分析物	3.83 µg/mL	30.64 μg/mL	245.10 μg/mL	3.83 µg/mL	30.64 μg/mL	245.10 μg/mL	
α-蒎烯	109.5	97.3	106.7	1.3	0.9	1.5	
莰烯	110.0	98.0	104.7	0.8	0.5	0.9	
桧烯	108.3	96.8	104.2	0.6	0.8	1.1	
β-月桂烯	104.6	96.4	103.8	1.9	0.3	1.0	
β-蒎烯	109.8	97.5	104.1	1.0	0.8	0.8	
α-水芹烯	109.7	96.1	103.3	1.6	1.8	1.8	
δ-3-蒈烯	104.4	96.5	103.8	2.3	0.8	0.6	
α-松油烯	115.9	93.0	103.4	1.1	0.6	0.7	
E-β-罗勒烯	106.0	96.8	103.1	1.9	2.1	1.4	
D-柠檬烯	109.5	97.4	103.2	0.9	0.5	0.8	
Ζ-β-罗勒烯	104.7	97.7	103.0	1.2	0.7	1.4	
桉树脑	109.6	97.0	103.3	1.6	1.3	0.6	
γ-松油烯	107.8	98.1	102.4	1.4	0.2	0.9	
异松油烯	112.9	95.8	103.6	1.3	0.7	0.8	
水合桧烯	112.1	94.9	103.7	1.4	0.6	1.1	
芳樟醇	114.3	94.5	104.5	2.5	0.7	0.9	
[±]-小茴香酮	111.1	96.3	104.0	0.4	0.2	1.0	
内型-葑基醇	112.3	96.3	103.9	0.6	0.8	0.6	
异胡薄荷醇	114.2	94.1	104.0	0.4	1.0	1.6	
[+/N/-]-樟脑	109.1	94.6	103.7	0.4	0.3	0.5	
异莰醇	111.4	95.8	103.5	1.2	1.4	0.6	
薄荷醇	113.2	95.6	104.0	1.0	0.7	0.8	
[±]-茨醇	112.1	95.2	103.5	1.6	0.5	0.5	
α-松油醇	113.8	95.1	103.6	0.9	0.5	0.5	
γ-松油醇	110.9	92.5	103.5	1.1	1.7	1.0	
橙花醇	109.6	94.9	101.5	0.8	0.5	0.9	
香叶醇	112.1	95.0	102.0	0.8	0.6	0.6	
长叶薄荷酮	111.2	95.0	103.5	0.4	0.6	0.8	
乙酸香叶酯	106.2	99.0	102.1	0.5	0.6	0.8	
金合欢烯	106.9	101.2	98.7	0.9	0.9	1.8	
α-柏木烯	97.7	103.3	98.8	1.2	0.6	2.0	
E-石竹烯	105.3	96.5	99.8	2.7	1.1	1.6	
α-葎草烯	104.1	99.2	99.8	2.2	0.6	1.0	
朱栾倍半萜	100.6	101.8	98.3	2.4	1.1	0.8	
Z-橙花叔醇	110.6	95.3	102.8	1.5	1.8	0.8	
E-橙花叔醇	111.5	95.7	102.9	1.1	1.2	0.7	
愈创木醇	111.4	95.2	102.8	1.0	0.9	0.8	
石竹烯氧化物	106.3	96.6	102.1	1.1	1.2	0.8	
雪松醇	109.0	95.7	102.4	1.3	1.0	0.6	
α-红没药醇	111.4	95.4	102.6	2.7	0.6	0.7	

各种大麻样品的分析

所有化合物的 LODs 和 LOQs 均低于最低校准点。因此,当前研究的报告限值被定义为大于相应化合物最低校准点的任意值。不同大麻样品中检测到的萜烯浓度见表 7。每个样品均具有独特的萜烯组成。在样品 5 中,检测到的萜烯的 RSD%

范围为 1.31%-5.52%,样品 6 中为 1.73%-4.28%。所考察的 6 个样品中检测到的浓度以及样品 5 和 6 的 %RSD 与之前使用 安捷伦应用简报 $5994-2032EN^{[5]}$ 中所述的氦气方法对相同样 品进行分析获得的结果相似,某些情况下可能更出色 $^{[7]}$ 。

表 7. 六种不同大麻花朵样品中的萜烯浓度 (µg/mL)。样品 5 和 6 重复运行四次 (n = 4) 以确定标准偏差 (SD)

目标分析物	样品 1 (μg/mL)	样品 2 (μg/mL)	样品 3 (µg/mL)	样品 4 (μg/mL)	样品 5 (µg/mL ± SD, n = 4)	样品 6 (µg/mL ± SD, n = 4)
α-蒎烯		5.14				
D-柠檬烯					4.54 ± 0.12	
桉树脑	8.60					
芳樟醇	21.56	4.62	10.96	4.75	11.13 ± 0.51	
内型-葑基醇	9.59		15.64		9.82 ± 0.15	
[±]-茨醇			14.41			
α-松油醇	17.70		28.32	7.55	9.31 ± 0.12	3.97 ± 0.08
γ-松油醇	26.58		42.14	10.96	13.92 ± 0.75	5.77 ± 0.10
金合欢烯	136.66	20.27	97.22	139.82	63.34 ± 1.87	19.43 ± 0.37
E-石竹烯	86.79	19.79	51.31	56.89	147.27 ± 3.82	20.37 ± 0.83
α-葎草烯	43.21	8.01	20.18	19.36	43.35 ± 1.20	6.49 ± 0.28
E-橙花叔醇	15.74		16.27	5.59	8.91 ± 0.26	
愈创木醇			9.94			
石竹烯氧化物	33.52	22.46	55.25	46.98	25.04 ± 1.38	10.02 ± 0.26
α-红没药醇	15.33	31.82	54.83	24.29	126.75 ± 3.09	27.09 ± 1.16

结论

本应用简报表明,氢气载气搭配 Agilent Hydro 惰性离子源是 分析大麻中萜烯的可行选择。配备 9 mm 提取透镜的 Hydro 惰性离子源和小内径 (0.18 mm) 色谱柱能够提供可接受的性 能,并且与使用氦气载气时的 GC/MS 分析性能相当。

安捷伦产品和解决方案旨在帮助实 验室进行大麻质量控制和安全检测 (在国家/地区法律允许的情况下使用)。

查找当地的安捷伦客户中心:

www.agilent.com/chem/contactus-cn

免费专线:

800-820-3278, 400-820-3278 (手机用户)

联系我们:

LSCA-China_800@agilent.com

在线询价:

www.agilent.com/chem/erfq-cn

www.agilent.com

DE65554885

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2023 2023 年 7 月 12 日,中国出版 5994-6511ZHCN

参考文献

- 1. 配备 Hydro 惰性离子源的 Agilent Inert Plus GC/MS 系统, *安捷伦科技公司技术概述*,出版号 5994-4889ZHCN, **2022**
- 2. Agilent EI GC/MS Instrument Helium to Hydrogen Carrier Gas Conversion(安捷伦 EI GC/MS 仪器载气由氦气转换为氢气的用户指南),*安捷伦科技公司用户指南*,出版号5994-2312EN,**2022**
- 3. Agilent GC/MS Hydrogen Safety(安捷伦 GC/MS 氢气安全),安捷伦科技公司用户指南,手册部件号 G7006-90053,**2022**
- 4. Agilent 8890 气相色谱系统的氢气安全,*安捷伦科技公司技术概述*,出版号 5994-5413ZHCN,**2022**
- 5. Hollis, J. S.; Harper, T.; Macherone, A. Terpenes Analysis in Cannabis Products by Liquid Injection using the Agilent Intuvo 9000/5977B GC/MS System(使用 Agilent Intuvo 9000/5977B GC/MS 系统通过液体样品进样分析大麻产品中的萜烯),安捷伦科技公司应用简报,出版号5994-2032EN,**2020**
- 6. 通过 https://explore.agilent.com/individual-column 可订购安捷伦定制气相色谱柱
- 7. Patel, S. U.; Westland, J. L.; Haddad S. P. 全自动样品前处理用于分析大麻花中的萜烯,*安捷伦科技公司应用简报*, 出版号 5994-6007ZHCN,**2023**

