

Agilent 8900 ICP-QQQ를 이용한 리튬 이온 배터리에 사용되는 양극재 내 불순물 분석을 위한 61종 원소의 미량 분석법 소개

저자

한철우, 김도현, 김영진, 박재홍, 최혜원 한국애질런트테크놀로지스 ㈜

개요

대용량, 고밀도 리튬 이온 배터리(LIB)에 대한 수요가 급증하고 있으며, 특히 가전제품, 전기 자동차(EV) 및 재생 가능한 전기 발전과 관련된 저장장치에 대한 수요가 빠르게 증가하고 있습니다. 따라서 주로 사용되는 양극재나 음극재 같은 물질의 순도는 최종 제품의 성능에 중요한 영향을 미칩니다. 따라서 배터리 구성 요소의 무기 불순물 수준을 제어하기 위해 양극재나 음극재, 전해질 등의 원료 공급업체와 배터리 제조업체는 일반적으로 ICP-MS와 같은 감도 높은 다원소 기술을 사용하여 화학 물질 내 극미량 수준의 금속을 분석하고 있습니다.

하지만 많은 연구자들은 양극재를 분석할 경우 복잡한 매트릭스로 인해 많은 전처리 과정을 거쳐 분석을 하게 됩니다. 이러한 전처리 과정 중에 생길 수 있는 많은 변수와 그로 인해 발생할 수 있는 오차들을 최소화하기 위해 Agilent에서는 8900 ICP-QQQ를 이용하여 ppb level의 미량분석을 위한 시료 전처리 및 회수율 테스트를 통해 리튬 이온 배터리 관련 연구자분들이 효율적으로 분석을 수행할 수 있도록 하였습니다.

서론

리튬 이온 배터리(LIB) 산업은 휴대용 전자 장치에 대한 수요와 배터리 전기자동차(EV) 사용 급증으로 호황기에 놓여 있습니다. 그에 따라 재생 가능한 전기 발전과 관련된 배터리 저장소에 대한 수요도 늘어나고 있습니다. 현재 리튬 이온 배터리는 비용, 용량, 충전 속도, 수명 측면에서 최상의 성능을 제공하고 있으며, 전체적인 배터리 성능에서 핵심적인 요소는 양극재 조성입니다.

리튬 배터리 제조에 사용되는 주류 양극 재료는 LiCoO2 기반 재료입니다. 이러한 LiCoO2 물질을 시작으로 리튬 이온 배터리 양극활물질의 여러 형태를 만들 수 있습니다. 양극재에 존재하는 불순물 함량은 안정성에 영향을 미칠 수 있으므로 양극재의 미량 불순물 원소를 분석하고 제거하는 것이 특히 중요합니다. 예를 들어, LiCoO2 물질과 LiMeO2 물질인 NiMnCo 의 조성비율의 존재는 양극재료의 효율성을 나타내는 중요한 지표입니다. Ni, Mn, Co 등의 주 성분의 함량과 불순물의 함량이 낮을수록 양극에서 전하 이동이 더 효율적입니다. 이 과정에서 제품 품질에 영향을 미칠 수 있는 다른 요소를 첨가할 가능성이 있으므로 이러한 요소에 대한 정확한 결정이 필요합니다.

특히 원소 불순물의 존재가 양극재 성능에 크게 영향을 미치기 때문에 양극재 내에서 원소 불순물을 모니터링하여 원료 및 최종 배터리 제품의 일관성과 품질을 확인해야 합니다. 따라서 양극재 생산업체 및 배터리 제조업체에서는 원료에 함유된 광범위한 원소를 측정할 수 있는 정확한 분석법이 필요합니다.

ICP-OES (유도결합 플라즈마 광방출 분광기)는 양극재 중 주성분 분석과 몇가지의 불순물 분석에 자주 사용됩니다. 그러나 ICP-OES는 µg/kg(ppb) 이하 수준에서 고체 양극재에 함유된 극미량 원소를 정량하고자 하는 실험실에 필요한 낮은 검출 한계를 제공하지 못합니다. 반면, ICP-MS(유도결합 플라즈마 질량 분석기)는 빠른 속도, 낮은 검출 한계, 넓은 원소 범위 및 우수한 선택성으로 인해 여러 산업 및 응용 분야의 극미량 원소 분석에서 선호하는 기술입니다. 이러한 특징 때문에 ICP-MS는 LIB에서 사용되는 구성 요소의 품질 관리와 관련하여 더욱 엄격해지는 요구사항을 충족하는 데 적합합니다. 양극재 뿐만 아니라 음극재 및 전해액과 같은 배터리 구성 요소 및 원료에 대한 일반 분석을 위해 SQ-ICP-MS는 이 LIB 응용에서 요구하는 낮은 검출 한계 및 대부분의 원소 범위를 제공합니다. 이에 더불어 애질런트에서는 제조 방법 개선과 새로운 재료 및 프로세스에 관한 연구를 위해 2013년 부터 ICP-000에 대한 기기 생산과 응용을 지원하고 있으며, SQ-ICP-MS에서는 분석하지 못하는 간섭이 심한 분석 물질들에 대해서 더 낮은 검출 한계와 더 정확한 데이터를 얻을 수 있습니다.

이 연구에서는 양극재 중 NiCoMn(NCM) 시료 내에서 61종의 원소를 정량하기 위해 8900 ICP-QQQ를 이용한 분석법에 대해 기술하였습니다.

시료 내 다양한 원소를 한번에 분석하기 위해서는 중첩되는 원소에 의한 간섭이나, 동중원소의 간섭을 효과적으로 제거하기 위해 여러가지 충돌 및 반응가스를 사용할 수 있습니다.

본 시험법에서는 최근 유해가스로 법적규제를 많이 받고 있는 암모니아(NH3) 반응가스를 사용하지 않고 극미량의 농도를 분석하였으며, 국내 법적규제에 대응하여 효율적인 분석법을 소개하고자 합니다.

실험

시료 정보

실험에 사용된 모든 산 및 희석액 등에 사용하는 시약은 반도체 등급을 사용하였으며, 혼합 표준품은 Agilent Technologies에서 성적서를 발행하며 불순물 제어에 대해 보증/판매하는 다중 표준용액을 사용하였으며, 희석에 사용하는 증류수는 초순수를 사용하였습니다.

61종 분석원소에 대한 검량선은 시료 정보와 같이 작성하였고 본 응용 자료에서 나타나는 데이터는 모두 한번의 시료 주입으로 분석된 데이터이며, 빠르고 정확한 분석을 진행하였습니다.

Agilent 8900 ICP-QQQ는 기존 He 충돌 모드와 비교하여 더욱 큰 충돌 에너지를 이용해 더 효과적으로 간섭을 제거할 수 있는 High Efficiency He 모드(HEHe)를 사용하여 간섭을 완벽하게 제거하였고, 앞에서 언급한대로 법적규제를 받을 수 있는 암모니아 가스를 사용하지 않고 산소(O₂)와 수소(H₂)를 반응가스로 사용하여 간섭을 제거하였습니다. 인화성 가스로 마찬가지로 규제를 받을 수 있는 수소가스에 대해서는 고순도 수소 발생기 (Hydrogen Generator)를 사용하여 위험성에 대한 규제를 안전하게 대응했습니다.

시료 정보

표 1. 시료 정보

시료 정보
검은색의 NiCoMn 양극재 파우더

시료는 0.2g을 취하고 질산 4ml, 염산 4ml를 첨가 후 1시간 가열 전처리 후 완전히 녹은 것을 확인한 뒤 50ml까지 표시하여 희석하였습니다. 그 후 전처리된 용액을 2.5ml를 취한뒤 50ml 까지 표시하여 그 용액을 분석하였습니다.

표 2. 검량선 작성을 위한 표준용액 농도 제조(단위 : ppb)

원소	Mass Transition(Q1 $ ightarrow$ Q2)	튠 모드	Std1(Blank)	Std2	Std3	Std4	Std5
Be	$9 \rightarrow 9$	No Gas	0	1.0	2.0	5.0	10.0
В	11→11	No Gas	0	1.0	2.0	5.0	10.0
Mg	24 → 24	H ₂	0	1.0	2.0	5.0	10.0
Al	27 → 27	H ₂	0	100.0	200.0	500.0	1000.0
Si	28 → 28	H ₂	0	1.0	2.0	5.0	10.0
K	39→39	H ₂	0	1.0	2.0	5.0	10.0
Са	40→40	H ₂	0	1.0	2.0	5.0	10.0
Р	31→47	O ₂	0	10.0	20.0	50.0	100.0
S	32→48	O ₂	0	100.0	200.0	500.0	1000.0
Cr	$52 \rightarrow 52$	H ₂	0	1.0	2.0	5.0	10.0
Fe	$56 \rightarrow 56$	H ₂	0	1.0	2.0	5.0	10.0
Cu	63 → 63	H ₂	0	1.0	2.0	5.0	10.0
Ti	48→64	O ₂	0	1.0	2.0	5.0	10.0
Zn	66 → 66	H ₂	0	1.0	2.0	5.0	10.0
V	51 → 67	O ₂	0	1.0	2.0	5.0	10.0
Ga	71→71	H ₂	0	1.0	2.0	5.0	10.0
Ge	72→72	H ₂	0	1.0	2.0	5.0	10.0
Se	78 → 78	H ₂	0	1.0	2.0	5.0	10.0
Rb	85→85	HEHe	0	1.0	2.0	5.0	10.0
Sr	88 -> 88	HEHe	0	1.0	2.0	5.0	10.0
Zr	90→90	HEHe	0	1.0	2.0	5.0	10.0
As	75→91	02	0	1.0	2.0	5.0	10.0
Nb	93 → 93	HEHe	0	1.0	2.0	5.0	10.0
Мо	95 → 95	HEHe	0	1.0	2.0	5.0	10.0
Ru	101 -> 101	HEHe	0	1.0	2.0	5.0	10.0
Rh	103→103	HEHe	0	1.0	2.0	5.0	10.0
Pd	105→105	H ₂	0	1.0	2.0	5.0	10.0
Ag	107→107	H ₂	0	1.0	2.0	5.0	10.0
Cd	111→111	H ₂	0	1.0	2.0	5.0	10.0
Sn	118→118	O ₂	0	1.0	2.0	5.0	10.0
Sb	121→121	O ₂	0	1.0	2.0	5.0	10.0
Cs	133→133	O ₂	0	1.0	2.0	5.0	10.0
Ba	137→137	HEHe	0	1.0	2.0	5.0	10.0
La	139→139	HEHe	0	1.0	2.0	5.0	10.0
Ce	140 → 140	HEHe	0	1.0	2.0	5.0	10.0
Pr	141 → 141	HEHe	0	1.0	2.0	5.0	10.0
Nd	146 → 146	HEHe	0	1.0	2.0	5.0	10.0
Sm	147 → 147	HEHe	0	1.0	2.0	5.0	10.0
Eu	153 → 153	HEHe	0	1.0	2.0	5.0	10.0
Gd	157→157	HEHe	0	1.0	2.0	5.0	10.0
Tb	159 → 159	HEHe	0	1.0	2.0	5.0	10.0
Dy	163→163	HEHe	0	1.0	2.0	5.0	10.0
Но	165→165	HEHe	0	1.0	2.0	5.0	10.0
Er	166→166	HEHe	0	1.0	2.0	5.0	10.0
Tm	169→169	HEHe	0	1.0	2.0	5.0	10.0
Yb	172→172	HEHe	0	1.0	2.0	5.0	10.0
Lu	175→175	HEHe	0	1.0	2.0	5.0	10.0
Hf	178→178	HEHe	0	1.0	2.0	5.0	10.0
Та	181→181	HEHe	0	1.0	2.0	5.0	10.0
W	182→182	HEHe	0	1.0	2.0	5.0	10.0
Re	185→185	HEHe	0	1.0	2.0	5.0	10.0
Os	189	H ₂	0	1.0	2.0	5.0	10.0
lr	193→193	HEHe	0	1.0	2.0	5.0	10.0
Pt	195→195	HEHe	0	1.0	2.0	5.0	10.0
Au	197→197	O2	0	1.0	2.0	5.0	10.0
Hg	202→202	O ₂	0	1.0	2.0	5.0	10.0
TI	205→205	HEHe	0	1.0	2.0	5.0	10.0
Pb	208→208	H ₂	0	1.0	2.0	5.0	10.0
W	182→214	O ₂	0	1.0	2.0	5.0	10.0
Th	232→232	HEHe	0	1.0	2.0	5.0	10.0
U	238→238	H ₂	0	1.0	2.0	5.0	10.0

기기 사용 및 조건

빠르고 정확한 분석을 위하여 Agilent 8900 ICP-QQQ 시스템을 사용하였으며, 시료 도입부는 iAS autosampler를 포함하여 white-white sample tubing, micromist nebulizer, double pass spray chamber 를 사용하였습니다. 또한 효율적인 시료 분석 및 획득된 데이터를 보다 빠르고 편리하게 처리하기 위하여 Agilent Masshunter Acquisition(ver. 5.2) 및 Masshunter Quantitative Analysis 소프트웨어를 사용하였습니다.

표 3. 기기 사용 및 조건(튜닝 파라미터)

	Parameter		Va	Value				
	Tune mode	Nogas	HEHe	O ₂	H ₂			
	RF Power	1,550W	1,550W	1,550W	1,550W			
Plasma	RF Matching	1.4V	1.4V	1.4V	1.4V			
	Sample Depth	meter Value mode Nogas HEHe 0 wer 1,550W 1,550W 1,5 atching 1.4V 1.4V 1. le Depth 8.0mm 8.0mm 8.0 izer Gas 1.05L/min 1.05L/min 1.05 chamber 2°C 2°C 2°C 2 ct1 4.0V 4.0V 4.0V 4.0V xt 1 4.0V 4.0V 4.0V 4.0V xt 2 -190.0V -190.0V -19 ja bias -105V -105V -10 ja Lens 8.8V 10.8V 100 ntrance -40V -150V -4 xit -60V -150V -6 ct 14.0V -75.0V 5 Gas - Helium 0xr wrate 10ml/min 3 3 Bias -8.0V -100.0V -5 RF 200V 200V <td>8.0mm</td> <td>8.0mm</td>	8.0mm	8.0mm				
Plasma	Nebulizer Gas	1.05L/min	1.05L/min	1.05L/min	1.05L/min			
	Nebulizer Pump	0.1rps	0.1rps	0.1rps	0.1rps			
	Spray chamber temperature	2°C	2°C	2°C	2°C			
	Extract 1	4.0V	4.0V	4.0V	4.0V			
	Extract 2	-190.0V	-190.0V	-190.0V	-190.0V			
	Omega bias	-105V	-105V	-105V	-105V			
Longoo	Omega Lens	8.8V	10.8V	10.8V	10.8V			
Lenses	Cell Entrance	-40V	-150V	-40V	-40V			
	Cell Exit	-60V	-150V	-60V	-60V			
	Deflect	14.0V	-75.0V	8V	0.0V			
	Plate bias	-55V	-150V	-55V	-55V			
	Used Gas	-	Helium	Oxygen	Hydrogen			
	He flow rate		10ml/min	30%	5.5ml/min			
Plasma	OctP Bias	-8.0V	-100.0V	-5.0V	-18.0V			
	Octp RF	200V	200V	200V	200V			
	Energy Discrimination	5V	5V	-7V	0V			

결과

검량선 작성

표육· ㅁㅇ근 ㄱㅇ ㅊ ㄹ씨 ㄱㅇ ㅇㅗ따에 뛰는 ㅁᆯ 같게 같을(같다.)//u	표4.	검량선	작성	및 실제	측정	농도값에	따른	검출	한계	산출(단위	: ppb
--	-----	-----	----	------	----	------	----	----	----	-----	----	-------

	원소	Mass Transition (Q1 \rightarrow Q2)	튠 모드	DL	BEC	R
1	Be	$9 \rightarrow 9$	No Gas	0.0015	0.0004	0.9996
2	В	$11 \rightarrow 11$	No Gas	0.020	0.163	0.9998
3	Mg	$24 \rightarrow 24$	H ₂	0.0088	0.087	0.9997
4	Al	27→27	H ₂	0.2198	24.02	0.9996
5	Si	28→28	H ₂	0.2054	1.237	0.9869
6	K	$39 \rightarrow 39$	H ₂	0.0169	1.044	0.9991
7	Ca	$40 \rightarrow 40$	H ₂	0.1259	1.444	0.9984
8	Р	31→47	02	0.4243	4.143	0.9997
9	S	32→48	02	0.2335	6.419	0.9997
10	Cr	$52 \rightarrow 52$	H ₂	0.0107	0.0946	0.9997
11	Fe	$56 \rightarrow 56$	H ₂	0.0134	1.312	0.9993
12	Cu	63→63	H ₂	0.0493	0.2499	0.9995

4

	원소	Mass Transition $(Q1 \rightarrow Q2)$	튠 모드	DL	BEC	R
13	Ti	48→64	O ₂	0.0160	0.0677	0.9995
14	Zn	66→66	H ₂	0.0168	0.16	0.9990
15	V	51→67	02	0.0018	0.0088	0.9994
16	Ga	71→71	H ₂	0.0023	0.0056	0.9997
17	Ge	72→72	H ₂	0.2304	0.0658	0.9998
18	Se	$78 \rightarrow 78$	H ₂	0.0151	0.0117	0.9996
19	Rb	$85 \rightarrow 85$	HEHe	0.0088	0.0438	0.9996
20	Sr	88→88	HEHe	0.0043	0.0049	0.9997
21	Zr	$90 \rightarrow 90$	HEHe	0.0059	0.0195	0.9998
22	As	$75 \rightarrow 91$	02	0.0033	0.0076	0.9996
23	Nb	93→93	HEHe	0.0010	0.0053	0.9997
24	Мо	$95 \rightarrow 95$	HEHe	0.0011	0.0040	0.9997
25	Ru	$101 \rightarrow 101$	HEHe	0.0027	0.0042	0.9996
26	Rh	$103 \rightarrow 103$	HEHe	0.0004	0.0012	0.9996
27	Pd	$105 \rightarrow 105$	H ₂	0.0408	0.5698	0.9996
28	Ag	$107 \rightarrow 107$	H ₂	0.0046	0.0341	0.9997
29	Cd	111→111	H ₂	0.0023	0.0031	0.9996
30	Sn	$118 \rightarrow 118$	02	0.0068	0.0299	1.0000
31	Sb	121→121	02	0.0018	0.0067	0.9997
32	Cs	$133 \rightarrow 133$	O ₂	0.0011	0.0163	0.9993
33	Ba	137→137	HEHe	0.0019	0.0181	0.9999
34	La	$139 \rightarrow 139$	HEHe	0.0002	0.0003	0.9999
35	Ce	$140 \rightarrow 140$	HEHe	0.0002	0.0007	0.9998
36	Pr	$141 \rightarrow 141$	HEHe	0.0002	0.0001	0.9998
37	Nd	$146 \rightarrow 146$	HEHe	0.0005	0.0001	0.9998
38	Sm	$147 \rightarrow 147$	HEHe	0.0009	0.0003	0.9996
39	Eu	$153 \rightarrow 153$	HEHe	0.0002	0.0001	0.9995
40	Gd	157→157	HEHe	0.0009	0.0003	0.9998
41	Tb	159→159	HEHe	0.0001	0.0001	0.9999
42	Dy	163→163	HEHe	0.0003	0.0002	0.9997
43	Ho	165→165	HEHe	0.00005	0.0002	0.9999
44	Er	166→166	HEHe	0.0007	0.0002	0.9998
45	Tm	169→169	HEHe	0.0002	0.0001	0.9995
46	Yb	172→172	HEHe	0.0005	0.0002	0.9995
47	Lu	175→175	HEHe	0.0001	0.0002	0.9996
48	Hf	178→178	HEHe	0.0017	0.0106	0.9994
49	Та	181→181	HEHe	0.0002	0.0018	0.9996
50	W	182→182	HEHe	0.0014	0.0061	0.9996
51	Re	185→185	HEHe	0.0004	0.0001	0.9998
52	Os	189	H ₂	0.1819	0.3222	0.9994
53	lr	193→193	HEHe	0.0020	0.0019	0.9996
54	Pt	195→195	HEHe	0.0078	0.0401	0.9997
55	Au	197→197	O ₂	0.0476	0.4666	0.9997
56	Hg	$202 \rightarrow 202$	O ₂	0.4465	0.7155	0.9997
57	TI	$205 \rightarrow 205$	HEHe	0.0011	0.0008	0.9995
58	Pb	208→208	H ₂	0.0030	0.0216	0.9995
59	W	182→214	O ₂	0.0010	0.0049	0.9995
60	Th	$232 \rightarrow 232$	HEHe	0.0015	0.0008	0.9995
61	U	238→238	H ₂	0.0005	0.0003	0.9992

- Agilent 8900 ICP-QQQ는 위의 표4와 같이 많은 원소를 한번에 분석 할 수 있으며, 52번 원소인 Os의 경우에는 싱글 MS 모드를 이용하여 ICP-QQQ 기기로도 싱글 MS와 같은 조건에서 분석이 가능합니다
- 검량선은 표2의 농도표와 같이 표준물질을 제조하여 한번에 측정한 뒤 계산되어 작성되었으며, R값에 보이는 것과 같이 대부분 0.999이상의 직선성을 보이는 것을 알 수 있습니다
- 또한 표 4에서 나타나는 것과 같이 낮은 검출 한계와 BEC를 확인 할 수 있으며, 해당 데이터는 Agilent Korea 실험실에서 진행되었으며, 실험실 환경은 일반 실험실과 동일합니다
- 검량선의 범위는 알루미늄(AI)과 황(S)은 100-1000ppb 수준으로 작성되었고,
 인(P)은 10-100ppb 수준으로 작성되었으며, 나머지 원소들에 대해서는 1-10ppb
 수준으로 검량선을 작성하였습니다

원소별 검량선 데이터

Calibration Curve - 6 / (6 pages)	×
II A V < > ₩ II 2 ↔ ↓ If Curve Fit: Linear * Origin: Blank offset * Weight: <none> * ISTD: <none> *</none></none>	
238 -> 238 U [H2_MSMS] x10 ⁶] y = 203750.2843 *x + 80.0833 PL = 0.0902 DL = 0.0005564 ppb BEC = 0.000393 ppb 5.0 Conc(ppb)	

시료 시험 및 회수율 시험

실제 리튬 이온 배터리 양극재 응용에서 가장 어려운 부분은 복잡한 매트릭스 안에서 시험자가 정확한 데이터를 얻어내는 것 입니다.

이에 따라 해당 노트에서는 시료 시험과 더불어 이미 알고있는 적절한 농도의 표준물질을 스파이킹하여 회수율 테스트를 시행하였으며, 해당 시험에서는 그에 따른 회수율 값(Recovery)과 표준편차(STDEV), 상대 표준편차(RSD)의 데이터를 아래의 표5와 같이 표기하였습니다.

실제 시료를 포함하여 각 표준용액 농도에 맞게 첨가하여 진행하였으며, 알루미늄(Al)과 황(S)의 경우 1000ppb의 농도를 첨가였고, 인(P)의 경우 100ppb를 첨가하였으며, 나머지 원소들에 대해서는 모두 10ppb를 첨가하여 회수율 테스트 및 시료 분석을 실행하였습니다.

표 5. 시료 분석 및 회수율 테스트(단위 : ppb)

	원소	Mass Transition (Q1 \rightarrow Q2)	튠 모드	시료 1	시료 2	STD 스파이킹된 시료 1	STD 스파이킹된 시료 2	회수율%	표준편차	% RSD
1	Be	9 -> 9	No Gas	0.001	0.002	10.117	10.882	108%	0.472	4%
2	В	11→11	No Gas	0.34	0.29	10.338	10.624	106%	0.243	2%
3	Mg	24→24	H ₂	5.105	5.107	15.4	15.515	109%	0.394	2%
4	A	27→27	H ₂	154.432	155.695	1218.328	1188.693	108%	19.116	2%
5	Si	28 → 28	H ₂	4.169	4.238	14.435	14.622	111%	0.266	2%
6	K	39 → 39	H ₂	1.003	0.994	11.197	11.493	109%	0.213	2%
7	Ca	40→40	H ₂	1.45	1.465	11.873	12.501	99%	0.563	5%
8	Р	31→47	O ₂	0.281	0.682	103.581	107.5	107%	1.644	2%
9	S	32→48	O ₂	506.618	529.169	1555.102	1634.107	113%	35.866	2%
10	Cr	$52 \rightarrow 52$	H ₂	0.248	0.243	9.591	9.615	98%	0.253	3%
11	Fe	$56 \rightarrow 56$	H ₂	0.886	0.907	10.565	10.632	100%	0.312	3%
12	Cu	63→63	H ₂	0.033	0.076	9.211	9.119	95%	0.287	3%
13	Ti	48→64	O ₂	0	0	10.301	10.501	106%	0.152	1%
14	Zn	<u>66</u> → 66	H ₂	0.169	0.18	9.404	9.39	95%	0.142	1%
15	V	51 → 67	O ₂	0.01	0.01	9.641	10.169	102%	0.193	2%
16	Ga	71 → 71	H ₂	0.027	0.027	9.999	9.907	103%	0.227	2%
17	Ge	72→72	H ₂	0	0	10.156	10.106	105%	0.189	2%
18	Se	78 → 78	H ₂	0.004	0.003	10.036	9.962	104%	0.211	2%
19	Rb	85→85	HEHe	0.009	0.007	9.897	10.139	102%	0.128	1%
20	Sr	88 -> 88	HEHe	0.027	0.027	10.103	10.282	104%	0.103	1%
21	Zr	90→90	HEHe	0.002	0.002	10.045	10.286	104%	0.123	1%
22	As	75→91	02	0.39	0.399	10.486	10.741	105%	0.129	1%
23	Nb	93→93	HEHe	0.002	0.001	9.981	10.177	103%	0.115	1%
24	Мо	$95 \rightarrow 95$	HEHe	0.013	0.014	10.023	10.243	104%	0.124	1%
25	Ru	101→101	HEHe	0.002	0.001	9.721	9.765	100%	0.11	1%
26	Rh	103→103	HEHe	0	0	9.527	9.651	98%	0.105	1%
27	Pd	$105 \rightarrow 105$	H ₂	0	0	9.652	9.635	102%	0.304	3%
28	Ag	107→107	H ₂	0	0.001	9.555	9.649	100%	0.22	2%
29	Cd	111→111	H ₂	0.167	0.166	9.898	9.884	102%	0.249	2%
30	Sn	118→118	O ₂	0	0	9.794	10.132	102%	0.163	2%
31	Sb	121→121	O ₂	0.096	0.097	10.32	10.615	107%	0.145	1%
32	Cs	133→133	O ₂	0	0	10.202	10.723	108%	0.182	2%
33	Ba	137→137	HEHe	0.019	0.022	9.951	10.288	104%	0.237	2%
34	La	139→139	HEHe	0.001	0.001	9.995	10.275	105%	0.189	2%
35	Ce	140→140	HEHe	0.004	0.003	10.133	10.316	105%	0.171	2%
36	Pr	141→141	HEHe	0.001	0.001	10.124	10.445	106%	0.208	2%
37	Nd	146→146	HEHe	0.005	0.005	10.184	10.394	107%	0.175	2%
38	Sm	147→147	HEHe	0.003	0.003	10.249	10.428	106%	0.14	1%
39	Eu	$153 \rightarrow 153$	HEHe	0.001	0.001	10.165	10.429	107%	0.185	2%
40	Gd	157→157	HEHe	0.004	0.004	10.233	10.511	108%	0.196	2%
41	Tb	$159 \rightarrow 159$	HEHe	0.001	0.001	10.01	10.191	104%	0.149	1%
42	Dy	163→163	HEHe	0.006	0.005	10.161	10.242	105%	0.141	1%
43	Ho	$165 \rightarrow 165$	HEHe	0.001	0.001	10.043	10.214	104%	0.154	1%
44	Ér	$166 \rightarrow 166$	HEHe	0.003	0.003	10.144	10.376	105%	0.141	1%
45	Tm	$169 \rightarrow 169$	HEHe	0.001	0	10.213	10.389	106%	0.118	1%
46	Yb	1/2→172	HEHe	0.002	0.002	10.142	10.38	107%	0.194	2%
47	Lu	1/5→175	HEHe	0	0	10.297	10.494	108%	0.191	2%
48	Ht	$1/8 \rightarrow 178$	HEHe	0.002	0	10.386	10.633	109%	0.175	2%
49	la	181 → 181	HEHe	0.001	0.001	10.254	10.586	10/%	0.169	2%
50	W	182→182	HEHe	0.224	0.223	10.491	10.783	10/%	0.143	1%
51	Re	185→185	HEHe	0	0 010	10.401	10.683	108%	0.15	1%
52	US	189	H ₂	U	0.018	10.219	9.988	102%	0.233	2%
53	Ir Di	193 → 193	HEHe	0.003	0.003	10.249	10.422	106%	0.118	1%
54	Pt	195 -> 195	HEHe	0.008	0.005	10.153	10.254	106%	0.184	2%
55	AU	19/ → 19/ 202 > 202	02	0 100	0.005	9./10	10.056	103%	0.214	2%
56	нд	$202 \rightarrow 202$	U2	0.192	0.035	10.983	10.000	10.4%	0.382	<u> 3</u> %
5/		$205 \rightarrow 205$	HEHe	0.014	0.014	9.///	10.131	104%	0.2	2%
58	PD	$208 \rightarrow 208$	H ₂	0.016	0.014	9./13	9./5/	102%	0.262	3%
59	VV T-	182→214	U2	0.224	0.223	10.491	10.783	10/%	0.143	1%
61		$232 \rightarrow 232$	HEHe	0.004	0.004	10.20	10.008	108%	0.209	2%
61	U	238 → 238	H ₂	0.004	0.004	10.043	9.994	105%	0.249	2%

결론

본 문서에서는 최근 화제가 되고 있는 리튬 이온 배터리 응용 내의 양극재 분석에 대해 ICP-MS를 이용하여 빠르고 정확한 분석법을 소개했습니다. 그 과정을 통해 전처리 및 시료 분석 데이터와 함께 신뢰성 확보를 위해 회수율 테스트도 시행하였습니다.

본 문서에서는 양극재 분석은 ICP-OES로 주성분만 분석이 가능하다는 기존 분석 방식의 고정 관념에서 벗어나 ICP-MS를 이용하여 전체적인 원소의 함량을 분석하여 제품에 영향을 줄 가능성이 있는 불순물들에 대한 분석법을 새롭게 제시하였습니다.

또한 기존의SQ-ICP-MS뿐만 아니라 Agilent의 8900 ICP-QQQ를 이용하여 기존 SQ-ICP-MS에서는 분석하기 어려운 Si, P, S까지 분석을 통해 총 60여개의 원소를 정밀하게 스크리닝하면서 미래의 리튬 이온 배터리 산업의 발전에 도움을 주었습니다.

마지막으로 Agilent의 리튬 이온 배터리 솔루션은 5800/5900 ICP-OES, 7850/7900 SQ-ICP-MS와 더불어 8900 ICP-QQQ까지 모든 분야의 금속 이온을 분석하는 응용을 모두 지원하고, 또한, 시험자의 시료에 맞게 보다 빠르고 정확한 분석법도 지원하여 시험자의 분석 어려움을 제거해 줍니다.

참고 문헌

- 1. Handbook of ICP-QQQ Applications using the Agilent 8800 and 8900, Agilent publication, 5991-2802EN
- 2. Wim Proper, Ed McCurdy and Junichi Takahashi, Performance of the Agilent 7900 ICP-MS with UHMI for high salt matrix analysis, Agilent publication, 5991-4257EN.
- Aimei Zou, Shuping Li, Chun Hiong Ang, and Ed McCurdy, Accurate ICP-MS Analysis of Elemental Impurities in Electrolyte Used for Lithium-Ion Batteries, Agilent publication, 5994-5363EN.

이 정보는 사전 고지 없이 변경될 수 있습니다.

안국애설된드레 그출도시스(위 대한민국 서울특별시 서초구 강남대로 369, A+ 에셋타워 9층, 06621 전화: 82-80-004-5090 (고객지원센터) 팩스: 82-2-3452-2451

이메일: korea-inquiry_lsca@agilent.com

©Agilent Technologies, Inc.2021 2024년 1월 10일, 한국에서 발행

한국애질런트테크놀로지스㈜

www.agilent.com/chem

DE96546076

5994-7410K0KR