

使用 Agilent 5977C HES GC/MSD 分析痕量永久性气体及温室气体

作者

王帅,曹喆 安捷伦科技(中国)有限公司

摘要

本应用简报介绍了使用 Agilent 5977C HES GC/MSD 系统测定 10 种痕量永久性气体及温 室气体的解决方案。该解决方案具有出色的灵敏度,检测下限低至 ppb 级别,且表现出 良好的重复性和线性。其适用于二氧化碳还原气体检测、温室气体分析以及车用燃料氢 气中永久性气体杂质分析等领域。

前言

在 2020 年 9 月 22 日联合国大会上,中国政府庄严承诺将于 2030 年实现碳达峰,2060 年实现碳中和。在"双碳"目标的牵 引下,相关行业不仅积极推进产业链布局,而且持续加强在科研 领域的投入。例如,在绿色能源的开发利用方面,国家一直在扶 持氢能源、氢燃料电池产业;在科研领域,二氧化碳的绿色转化 研究也在如火如荼地开展;在环保行业,温室气体的监测也在有 条不紊地实施。这些行业和领域均涉及一些永久性气体和温室气 体的分析项目,例如二氧化碳还原气体的分析、车用燃料氢气中 杂质气体的分析等。

一直以来,对于此类气体的检测,首选方案是利用各种阀切换技术的气相色谱法。安捷伦作为气相色谱的行业领导者,推出了一系列针对二氧化碳还原产物、温室气体分析以及车用燃料氢气中气体杂质分析的气相色谱解决方案,已经为相关研究人员和检测工作者提供了强有力的支持。然而,在二氧化碳还原同位素溯源产物及还原转化率等研究中,由于同位素标记的化合物与非标记化合物在色谱柱上无法分离,高灵敏度 GC/MS 成为满足此类分析需求的不二之选。

本研究利用配置高效离子源 (HES) 的 5977C GC/MSD,开发出 通过一次进样同时检测多种气体的分析方案。该分析方案灵敏度 高、重复性好,适用于二氧化碳还原同位素溯源产物研究,也可 作为永久性气体和温室气体常规分析的替代方案。

实验部分

试剂和样品

实验用混合标气购于液化空气公司,成分列于表 1 中。采用安捷 伦动态稀释系统对混合标气进行稀释,以测试整个系统的动态分 析范围和检测限。

表 1. 实验用混合标气的成分

序号	名称	浓度 (ppm, V/V)	类型
1	氢气	4.95	永久性气体
2	氧气	5.02	永久性气体
3	氮气	5.03	永久性气体
4	氩气	4.97	永久性气体
5	甲烷	4.96	永久性气体/温室气体
6	一氧化碳	5.00	永久性气体
7	二氧化碳	5.01	温室气体
8	氧化亚氮	5.04	温室气体
9	乙烯	4.96	常见化工原料气体
10	六氟化硫	4.97	温室气体
11	氦气	平衡气	永久性气体

仪器和设备

采用 Agilent 8890-5977C GC/MSD(配备 HES)系统,其配备双 色谱柱(示意图见图 1),通过阀切换可实现两种分离模式,即单 柱分离模式和双柱分离模式。

图 1. 仪器系统示意图

气相色谱条件

心界・	Agilant 9900 CC
以俗・	Aglient 8890 GC
阀箱温度:	50 °C
进样口温度:	100 °C
载气:	高纯氦气(纯度 99.9995%)
分析柱:	色谱柱 1: PloT Q 毛细管柱 色谱柱 2: PloT 5A-Molsieve 毛细管柱 2 根色谱柱均为具有集成颗粒捕集阱的多孔层 开管柱
柱流速:	恒流 1.2 mL/min
柱温箱升温程序:	双柱分离:在 40 °C 下保持 4.5 min, 以 50 °C/min 的速率升至 110 °C 并保持 6 min 单柱分离:35 °C 恒温保持 10 min
传输线温度:	230 °C
质谱条件	
仪器:	Agilent 5977C GC/MSD,配备 HES
离子源温度:	230 °C
四极杆温度:	150 °C
电离能量:	70 eV(H ₂ 采用低电离能量进行检测,以减小 He 的影响)
采集模式:	SIM 模式, m/z: $H_2(2)$; $O_2(16, 32)$; N ₂ (14, 28); Ar (40); CH ₄ (15, 16); CO (12, 28); C ₂ H ₄ (27, 28); CO ₂ (12, 44); N ₂ O (30, 44); SF ₆ (89, 127)
增益因子:	0.5

结果与讨论

双柱分离模式

永久性气体和温室气体等 10 种气体的分离

在双柱分离模式下,除氧气、氩气外的其他目标气体均可实现色 谱分离。需要特别指出的是一氧化碳和氮气。这两种气体丰度最 高的碎片离子均为 m/z 28,在双柱模式下两者完全分离,均可使 用 m/z 28 作为定量离子,获得出色的灵敏度。而氧气和氩气虽 然共流出,但其碎片离子有所不同,因此仍然可以根据质谱结果 进行区分。图 2 显示了在常规 70 eV 电离能量下除 H_2 外的其他 9 种目标气体(即 O_2 、 N_2 、Ar、 CH_2 、CO、 C_2H_4 、CO₂、 N_2O 和 SF₆)的总离子流图。

图 2. 常规 70 eV 电离条件下除 H_2 外的其他 9 种目标气体(浓度均为 5 ppm (V/V)) 的总离子流图

对于氢气,采用低电离能量条件进行检测。该条件同样可以用于 检测其他 9 种气体,但与常规 70 eV 电离能量下的结果比较,灵 敏度偏低。图 3 显示了低电离能量条件下得到的包括 H₂ 在内的 10 种目标气体的总离子流图,图 4 为低电离能量条件下 10 种目 标气体组分的提取离子流图。

图 3. 低电离能量条件下,包括 H_2 在内的 10 种目标气体(浓度均为 5 ppm (V/V))的总离子流图

 ${\bf B}$ 4. 低电离能量条件下,包括 H_2 在内的 10 种目标气体(浓度均为 5 ppm (V/V))的提取离子流图

双柱分离模式下的重复性和检测限

常规 70 eV 电离能量下的分析重复性和检测限

在 70 eV 电离能量下进行重复性和灵敏度考察。利用动态稀释器 将混合标气稀释至 25 ppb,连续进样 8 针,通过计算峰面积相对 标准偏差 (RSD,%)来评估分析重复性,并利用以下公式计算方法 检测限 (MDL): MDL = SD * t(n-1,0.99),其中 t(n-1,0.99)为置信 度 99%、自由度 n - 1 时的 t 值, n 为重复测定次数。部分结果列 于表 2 中。从该表中可以看出,CO₂、N₂O、C₂H₄、SF₆、CH₄和 CO 等 6 种目标气体的峰面积 RSD (%)在 0.7%-4.9%之间,且相 应的 MDL 均低于 4.1 ppb。对于氮气、氧气和氩气,由于稀释过 程中存在空气渗漏及阀渗漏等问题,无法稀释到目标浓度,因此 未对其 MDL 进行考察。但根据混合标气中氧气、氮气和氩气与其 他气体的响应比可以推断,这三种气体的 MDL 同样可以低至 ppb 级别。如需准确定量分析 ppb 级别的这三种气体,建议配备带吹 扫的阀箱,以消除阀切换过程中的空气渗漏。

图 5 显示了在常规 70 eV 电离条件下,浓度 25 ppb (V/V) 的混合 标气连续进样 8 针,6 种目标气体 (CO₂、N₂O、C₂H₄、SF₆、CH₄ 和 CO) 的叠加色谱图。从叠加图可以看出 6 个化合物重复性优 异,叠加的色谱图几乎完全重合。图 6 显示了浓度均为 10 ppb (V/V) 的 CO₂、N₂O、C₂H₄、SF₆、CH₄ 和 CO 的提取离子流图和信 噪比结果,即使在低至 10 ppb 的浓度下,信噪比依然有不错的结 果,体现了系统优异的灵敏度。

表 2. 部分目标气体的重复性及检测限

		CO ₂			N ₂ O	C_2H_4					
样品名称	峰面积	RSD (%)	MDL (ppb, V/V)	峰面积	RSD (%)	MDL (ppb, V/V)	峰面积	RSD (%)	MDL (ppb, V/V)		
STD 25 ppb-1	838	-		140	_		128				
STD 25 ppb-2	842			136	_		123				
STD 25 ppb-3	853	_		139	_		125	_			
STD 25 ppb-4	830	2.5	2.2	133	2.5	2.0	120		2.1		
STD 25 ppb-5	815		2.2	135	2.5	2.0	118	5.5	2.1		
STD 25 ppb-6	802			138	_		119	-			
STD 25 ppb-7	802	_		130	_		117	_			
STD 25 ppb-8	803	_		139	_		119	_			
		SF ₆			CH_4			СО	CO		
样品名称	峰面积	RSD (%)	MDL (ppb, V/V)	峰面积	RSD (%)	MDL (ppb, V/V)	峰面积	RSD (%)	MDL (ppb, V/V)		
STD 25 ppb-1	3105			29	_		395				
STD 25 ppb-2	3091	-		29	_		383	-			
STD 25 ppb-3	3127	_		29	_		391				
STD 25 ppb-4	3096	0.7	0.62	29	- 1.5 1.2 -	1.0	352	4.0	4.1		
STD 25 ppb-5	3067	0.7	0.05	29		1.2	386	4.9	4.1		
STD 25 ppb-6	3080	_		28			345	_			
STD 25 ppb-7	3053			28			385				
STD 25 ppb-8	3094	-		28	-		378				
CO2 ×10 ² - 1.06 - 1.04 - 1.02 - 1 - 0.98 - 0.96 - 0.94 - 0.92 - 0.99 - 0.86 - 0.86 - 0.84 - 0.82 - 0.86 - 0.84 - 0.82 - 0.86 - 0.84 - 0.82 - 0.8 - 0.84 - 0.82 - 0.8 - 0.9 - 0.8 - 0.8 - 0.8 - 0.8 - 0.8 - 0.8 - 0.8 - 0.9 - 0.9 - 0.8 -	3.8 4 4.2 4.4	4.6 4.8 5 5.2	N20 ×10 ² 1.04 - 1.02 - 1.03 0.98 - 0.94 - 0.94 - 0.92 - 0.9 - 0.88 - 0.86 - 0.84 - 0.82 - 0.82 - 0.84 - 0.82 - 0.84 - 0.82 - 0.84 - 0.82 - 0.84 - 0.84 - 0.84 - 0.85 - 0.86 - 0.88	+ 3.6 3.8 4 4.2	4.4 4.6 4.8 5 5	C ₂ ×1 1. 1. 0. 0. 0. 0. 0. 5.2 5.4 5.6	H ₄ 0 ² - 08 - 04 - 1 - 96 - 92 - 38 - 34 - 1.8 - 4.4 4.6 4.8	5 5.2 5.4 5	6 5.8 6 6.2 6.4		
SF ₆ ×10 ² - 1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 1 -	52545652	5 6 26 46 66 9	CH ₄ ×10 ² - 1.06 - 1.04 - 1.02 - 1 - 0.98 - 0.96 - 0.94 - 0.92 - 0.9 - 0.88 -			CC ×1 1.0 1. 1.0 1.0 1. 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9) 0 ² 25 - 02 - 15 - 01 - 05 - - - - - - - - - - - - -		1 112 114		

图 5. 常规 70 eV 电离条件下,浓度 25 ppb (V/V) 的混合标气连续进样 8 针,部分目标气体的叠加色谱图

图 6. 浓度均为 10 ppb (V/V) 的部分目标气体的提取离子流图和信噪比

低电离能量条件下的分析重复性

在常规 70 eV 电离能量下,由于作为载气的氦气的影响,无法检测 ppm 及更低含量的氢气。通过参数优化,我们可在低电离能量下检测 ppm 及更低含量的氢气及其他 9 种气体。在低能量条件下我们也考察了 10 种目标气体的分析重复性。将 5 ppm 混合标气连续进样 8 针,通过计算 10 种目标气体的峰面积 RSD (%) 来考察分析重复性。10 种目标气体检测的重复性考察结果见表 3,所有目标气体的峰面积 RSD (%) 在 1.7%-5.1% 之间,重复性优异。图 7 为低电离能量条件下,5 ppm (V/V) 混合标气连续进样 8 针所得到的总离子流图的叠加图,从图中可以看出,所有色谱峰几乎完全重叠,同样体现了系统优异的重复性。

表 3. 10 种气体仕低电离能重下的里夏性敛据	表 3.	10 种4	气体在低	〔电离能量	量下的重复	夏性数据
---------------------------------	------	-------	------	-------	-------	------

	CO ₂	2	N ₂ C)	C₂H	4	SF	SF ₆ H ₂			Ar		02		N ₂		CH_4		CO							
序号	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)	峰面积	RSD (%)						
1	1958		3141		1059		389	9 45	45		808	1728		384	1	1314		1314								
2	1898	-	-	_	_		3060	-	1049	-	385	-	45		796		1756	-	390	12	1296		1296	_		
3	1880	_	3029	_	1030	-	376		44	_	785		1644	-	354		1284		1284	_						
4	1893	- 1.8 -	3026	-	1033	-	376		45			787		1727	-	390	1	1291	0.1	1291	- 1 7					
5	1918		2996	- 2	1036	- 2	363		5.1 44	- 0.1	J. I	J. I	44	44	44	44	- 4.7	788	- 2.3	1644	- 2.9	358	- 4.8 -	1298	- 2.1 -	1298
6	1976		2968	_	1048	-	333	_	48	8	-	828	1726	-	395		1309		1309	_						
7	1903		2974	_	1002	-	369	_	49	-	764	_	1638	-	360		1247		1247	_						
8	1938	_	2961	_	1003	-	349	19	48			786	_	1660	_	355		1273		1273	_					

图 7. 低电离能量下, 5 ppm (V/V) 混合标气连续进样 8 针所得到的叠加的总离子流图

低电离能量条件下的氢气检测限

将混合标气稀释至 500 ppb 后进行检测,所得氢气的提取离子流 图见图 8。从图中可以看出,此时氢气的信噪比 (S/N) 接近 3, 因此认为在低电离能量下,该方法对氢气的检测限为 500 ppb 左 右。将 500 ppb 混合标气连续进样 8 针,通过计算氢气的峰面 积 RSD (%) 来专门考察检测限浓度下氢气分析的重复性,所得 峰面积 RSD (%) 为 6%,且氢气的叠加色谱峰几乎完全重叠(见 图 9),表明分析重复性出色。

图 8. 低电离能量条件下,500 ppb (V/V) H₂ 的提取离子流图

图 9. 低电离能量条件下,500 ppb (V/V) 混合标气连续进样 8 针所得到的 $\rm H_2$ 的叠加 色谱图

双柱分离模式下的线性

将 5 ppm 混合标气分别稀释至 10 ppb、12.5 ppb、25 ppb、50 ppb、 100 ppb、125 ppb、250 ppb 和 500 ppb,然后在常规 70 eV 的 电离能量下对各个稀释混合标气及原始混合标气分别进行测定, 以浓度为横坐标、峰面积响应为纵坐标并强制过原点来绘制标 准曲线。CO₂、N₂O、C₂H₄、SF₆、CH₄ 和 CO 等 6 种目标气体的 结果如图 10 所示。从图中可以看出,在 10-5000 ppb 的浓度范 围内,这些目标气体的线性相关系数 (R²) 均高于 0.9993 以上, 表明该方法具有出色的线性。对于氮气、氧气和氩气,由于硬 件条件的限制,无法将它们稀释到上述目标浓度,因此未考察 其线性;对于氢气,由于低电离能量条件下的最低检测浓度为 0.5 ppm (V/V),因此同样未考察其线性。

图 10. 部分气体在 10-5000 ppb (V/V) 浓度范围内的标准曲线

单柱分离模式

单柱分离模式下 10 种永久性气体及温室气体的分离

在单柱分离模式下,使用单根 PloT Q 色谱柱进行分离,分析时间 更短,仅需要 7.5 min 即可完成分析。但是在该模式下,氢气、 氧气、氩气、氮气和一氧化碳五种目标气体共流出,必须通过 质谱碎片进行区分。需要特别指出的是:一氧化碳与氮气在单柱 模式下共流出,且两者丰度最高的碎片离子均为 m/z 28,通过 质谱也无法区分,只能选择各自丰度较小的碎片离子对两者进行 区分和定量(氮气使用 m/z 14 的碎片离子定量,一氧化碳使用 m/z 12 的碎片离子定量)。由于一氧化碳和氮气的定量采用的是 丰度较低的碎片离子,因此检测灵敏度不及双柱模式。图 11 显 示了单柱模式和常规 70 eV 电离能量下分析得到的除氢气以外的 9 种目标气体的总离子流图,图 12 显示了除 H₂ 外的所有其他目 标气体的提取离子流图。

图 11. 在单柱模式和常规 70 eV 电离能量下得到的目标气体(浓度均为 5 ppm (V/V)) 的总离子流图

单柱分离模式下一氧化碳的检测限

在单柱分离模式和常规 70 eV 电离能量下,考察了除氢气外的其他目标气体的检测限,结果甲烷、二氧化碳、氧化亚氮、乙烯、 六氟化硫的检测限与双柱分离模式下的检测限一致,此处不再 赘述。对于氮气、氧气和氩气,由于稀释过程中的空气渗漏导 致无法稀释至目标浓度,因此未考察其检测限。而一氧化碳在双 柱模式下在 PloT 5A-Molsieve 上实现分离,不存在共流出的情 况,使用丰度最大的 m/z 28 作为定量离子;而在单柱模式下存 在与氮气共流出的现象,且两者同样具有 m/z 28 的碎片离子, 只能使用丰度较低的 m/z 12 作为定量离子,因此考察并单独讨 论了单柱模式下一氧化碳的检测限。一氧化碳在 50 ppb (V/V)和 100 ppb (V/V) 浓度下的检测结果分别见图 13 和 14,根据信噪比 结果推测,该方法对一氧化碳的检测限接近 50 ppb (V/V)。

图 13. 单柱分离模式下浓度为 50 ppb (V/V) 的 CO 的检测结果

图 14. 单柱分离模式下浓度为 100 ppb (V/V) 的 CO 的检测结果

单柱分离模式下一氧化碳的线性

将 5 ppm 混合标气稀释至 50 ppb、100 ppb、125 ppb、250 ppb 和 500 ppb,然后在单柱分离模式下分别测定各个浓度的稀释混 合标气和原始混合标气 (5 ppm),然后以浓度为横坐标并以峰面 积响应为纵坐标来绘制标准曲线。一氧化碳的标准曲线如图 15 所示。从图中可以看出,在 50-5000 ppb 和 50-500 ppb 浓度范 围内,线性相关系数 (R²) 均高于 0.995,表明该方法在这两个浓 度范围内均具有出色的线性。因此,当不需要检测氢气且样品中 的一氧化碳目标浓度在 50 ppb 以上时,不必采用双柱进行分离, 单柱模式即可满足分离要求。

结论

本文介绍了使用 Agilent 5977C HES GC/MSD 系统测定 10 种痕量 永久性气体及温室气体的解决方案,该方案的检测限低至 ppb 级 别,且重复性和线性出色。该方案配备双色谱柱,通过阀切换可 实现单柱分离和双柱分离这两种分离模式。在单柱分离模式下, 可分析除氢气外的 9 种目标气体,且分析速度快。在双柱分离模 式下,可检测所有 10 种目标气体,并且除 O_2 、Ar 外,其他目标 气体均可获得色谱分离,对一氧化碳和氮气等气体的检测灵敏度 更出色,部分气体的检测限可以低于 10 ppb (V/V)。针对氢气分 析,在低电离电离能量下,氢气检测限可达 500 ppb (V/V)。另 外,本研究开发的分析方案的配置可根据客户实际情况进行定制 化调整,例如选配反吹装置反吹 H_2O 和重组分,还可根据实际需 求拓宽分析范围。

查找当地的安捷伦客户中心:

www.agilent.com/chem/contactus-cn

免费专线:

800-820-3278,400-820-3278(手机用户)

联系我们:

LSCA-China_800@agilent.com

在线询价:

www.agilent.com/chem/erfq-cn

 、 微信搜一搜
 Q. 安捷伦视界

www.agilent.com

DE10223369

仅供科研使用,不用于临床诊断用途。

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2023 2023 年 2 月 22 日,中国出版 5994-5743ZHCN

