

临床研究中红细胞脂肪酸谱的测定

化学电离气相色谱串联质谱仪

作者

Yvonne Schober¹, Hans Günther Wahl^{1,2}, Harald Renz¹, Wolfgang Andreas Nockher¹和 Carrie J. Adler³

- ¹ 德国马尔堡菲利普大学检验 医学和病理生物化学研究所
- ² Medizinisches Labor Wahl, 德国吕登沙伊德
- ³ 安捷伦科技公司 美国加利福尼亚州圣克拉拉

摘要

细胞脂肪酸 (FA) 谱被公认为各种人类疾病的生物标记物,通常采用气相色谱质谱联用系统 (GC/MS) 对其进行分析,而这种方法非常费时费力。因此临床研究中需要一种高通量的分析方法。在本研究中,从红细胞 (RBC) 中提取 FA 后进行衍生化,以生成脂肪酸甲酯 (FAME)。采用氨气诱导化学电离 (CI) 的气相色谱串联质谱 (GC/MS/MS) FA 谱分析法专为人 RBC 的分析而开发。有 703 个 RBC 样品采用 GC/MS/MS 进行了FA 谱分析。将该分析方法与采用电子轰击电离 (EI) 的单杆 GC/MS 传统方法进行比较。氨气诱导 CI 分析能够生成足够数量的分子离子,以对 FAME 进行进一步研究。该分析确定了 45 个 FA 谱的特定碎片,用于实现可靠的定量分析和碎裂。使用传统GC/MS 的典型分析时间长达 60 分钟,但该 GC/MS/MS 分析方法的运行时间仅为9 分钟。分析的所有 FA 批间与批内变异小于 10%。将氨气诱导 CI 与 GC/MS/MS 分析相结合,可帮助临床研究实验室实现稳定、可靠的高通量 FA 谱分析。

前言

为了测定临床研究实验室中的脂肪酸 (FA) 谱,需要灵敏的特异分析方法。过去分离 FA 谱采用的是气相色谱 (GC) 结合火焰离子化检测器 (FID),这个组合使研究人员能够分析不同基质中的单个 FA¹。质谱 (MS) 的引入改善了这种分析方式²,但传统 GC/MS 分析需要长时间的色谱分离才能确保可靠的鉴定和定量。本研究开发并验证了一种用于红细胞 (RBC) 等生物样本中 FA 高通量分析的特异、快速而灵敏的分析方法。为此,使用化学电离 (CI) 与气相色谱串联质谱 (GC/MS/MS) 结合来测定 FA。采用这些技术可得到过去使用 GC/MS 进行 FA 分析的改进方法。

实验部分

配备 CI 的 GC/MS/MS 配置和参数

参数	值
仪器	配备分流/不分流进样口 (G3452-67000) 的 Agilent 7890A GC (G3440A) 配备化学电离 (CI) 源的 Agilent 7000 MS/MS (G7010BA)
进样口温度	250 °C
离子源温度	250 °C
四极杆温度	150 °C
进样量	1 μL
保留间隙柱	安捷伦 5 m, 0.25 mm 无涂层预柱
分析柱	Agilent J&W CP-Sil 88 FAME 分析专用气相色谱柱, 50 m×0.25 mm,0.20 μm,7 英寸柱架 (CP7488)
载气	氦气,2.2 mL/min
CI 试剂	氨气,1.3 mL/min
柱温箱升温程序	50°C(保持 1 分钟), 以 120°C/min 升至 70°C, 以 45°C/min 升至 175°C, 以 35°C/min 升至 230°C(保持 3.5 分钟)
停止时间	9.00 分钟
MS 采集模式	MRM 模式

配备 EI 的 GC/MS 配置和参数

参数	值					
仪器	配备分流/不分流进样口 (G3452-67000) 的 Agilent 7890A GC (G3440A) 配备化学电子轰击 (EI) 离子源的 Agilent 5975C MS (G3243A)					
进样口温度	230 °C					
传输线温度	230 °C					
四极杆温度	150 °C					
分析柱	Agilent J&W CP-Sil 88 FAME 分析专用气相色谱柱, 100 m,0.25 mm,0.20 μm,7 英寸柱架 (CP7489)					
载气	氦气,2.0 mL/min					
柱温箱升温程序	120 °C(保持 5 分钟), 以 5 °C/min 升至 220 °C(保持 5 分钟), 以 4 °C/min 升至 240 °C(保持 10 分钟)					
停止时间	45.00 分钟					
MS 采集模式	SIM 模式					

化学品与试剂

异丙醇、甲醇和己烷(GC 级)购自 Fisher Scientific (Schwerte, Germany)。水(LC/MS 级)和三氟化硼 (BF₃)(14% 甲醇溶液)购自 Sigma-Aldrich (Hamburg, Germany)。硫酸钠 (Na₂SO₄)购自 Merck (Darmstadt, Germany)。

经认证的 37 种脂肪酸甲酯 (FAME) 混合物 (TraceCERT) 购自 Sigma-Aldrich (Hamburg, Germany)。另一种 FAME 混合物购自 NuChekPrep (Elysian, MN, USA),包括内标 C17:1(十七碳烯酸甲酯)在内的所有其他 FAME 均购自 Larodan (Malmö, Sweden)。

使用常规实验室分析提交的 EDTA 抗凝血液等分试样。按照"赫尔辛基宣言 II"向受试者详细说明,并获得使用不具名实验室数据的知情同意。

FAME 分析的 MRM 参数

表 1. 分析物参数

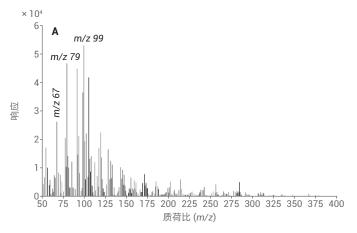
脂肪酸	通用名	RT (min)	母离子 (m/z)	定量离子 (m/z)	CID (V)	定性离子 (m/z)	CID (V)
C6:0		2.90	147.8	59.0	21		7
C8:0		3.90	175.8	159.1	5	57.0	25
C10:0		4.36	203.8	187.1	5	57.0	30
C11:0		4.58	217.8	201.2	3	57.0	25
C12:0		4.79	231.8	215.5	3	57.0	30
C13:0		4.99	245.8	229.2	5	57.0	30
C14:0		5.19	259.8	243.2	5	57.0	35
C14:1t		5.29	257.8	241.2	3	191.1	11
C14:1c		5.35	257.8	241.2	3	191.1	11
C15:0		5.38	273.8	257.2	5	57.0	35
C15:1		5.54	271.8	255.2	9	205.1	11
C16:0		5.57	287.7	271.2	5	57.0	35
C16:1t		5.67	285.9	269.2	3	237.2	9
C16:1c		5.71	285.9	269.2	3	237.2	9
C17:0		5.77	301.8	285.3	7	103.0	25
C17:1		5.92	299.8	283.3	3	251.2	9
C18:0		5.98	315.8	299.3	4	71.0	9
C18:1n9t		6.06	313.8	297.3	4	265.2	9
C18:1n9c		6.12	313.8	297.3	7	265.2	9
C18:2n6t		6.21	311.9	295.2	3	263.2	9
C18:2n6c	亚油酸	6.32	311.9	295.2	7	263.2	9
C20:0		6.40	343.8	327.3	3	85.0	25
C18:3n6		6.49	309.9	293.2	3	261.2	3
C20:1n9		6.56	341.8	325.3	3	293.3	9
C18:3n3	α-亚麻酸	6.60	309.9	293.2	3	261.2	3
C21:0		6.64	357.8	341.3	7	57.0	35
C18:4n3		6.74	308.0	291.0	3	259.0	3
C20:2		6.81	339.9	323.3	3	291.2	35
C22:0		6.91	371.9	355.3	7	103.0	30
C20:3n9		7.00	337.9	321.3	3	289.2	3
C20:3n6		7.02	337.9	321.3	5	289.2	3
C22:1n9		7.10	369.9	353.3	3	321.3	11
C20:3n3		7.14	337.9	321.3	3	289.2	3
C23:0		7.21	385.8	369.3	6	71.0	30
C20:4n6	花生四烯酸	7.21	335.9	319.3	3	287.2	3
C22:2		7.42	367.9	351.3	3	319.3	7
C24:0		7.54	399.8	383.4	3	103.0	29
C20:4n3		7.55	336.0	319.2	5	287.2	9
C20:5n3	二十碳五烯酸	7.62	333.9	317.3	3	285.2	3
C22:3		7.63	366.0	348.8	5	317.1	5
C24:1n9		7.79	397.9	381.4	3	349.3	11
C22:4n6		7.98	364.0	347.3	5	297.1	5
C22:5n6		8.20	362.0	345.0	3	313.0	5
C22:5n3		8.54	362.0	345.0	3	313.0	5
C22:6n3	二十二碳六烯酸	8.82	359.9	343.2	3	311.2	3

样品前处理

为从血红细胞中提取 FA,将 0.5 mL 全血和 10 mL 0.9% 盐水混合,并在 2500 g 下离心 5 分钟。弃去上清液后,重复一次清洗步骤。之后加入 1 mL 蒸馏水使细胞溶解,并在冰箱的低温条件中储存至少 30 分钟。然后将 FA 提取物与 5 mL 内标 (IS) 溶液混合,并在 2500 g 下离心 5 分钟。IS 溶液含有 0.2 mg/mL FAC17:1 己烷/异丙醇 (3:2) 溶液以及 3 mL Na_2SO_4 溶液 (6.7%)。然后将己烷相转移到干净的玻璃管中并用氮气将样品蒸干。在分离 FA 时,加入 1 mL BF_3 甲醇溶液 (14%) 并在 100 °C 下温育 10 分钟进行酯化。然后,冷却至室温后,将 1 mL 水和 3 mL 己烷加入样品中,并在 2500 g 下离心 5 分钟。将己烷相转移至干净的样品瓶中,用氮气蒸干。最终的FAME 样品溶于 250 mL 己烷中,可储存在 -25 °C 条件下。分析前将样品以 1:20 的比例用己烷稀释。

数据分析

采用 Agilent MassHunter 软件进行数据采集 (Waldbronn, Germany)。为了对 FAME 进行正确鉴定和定量,用两个碎片离子,一个用于定量,另一个用于确认。校准标样中采用 45 种 FAME(表 1)的混合物。将单个 FA 浓度计算为评估的 FA 集合中 100% 的相对百分比,或计算为绝对值。采用 MassHunter 定量分析软件 5.0 进行数据分析。使用分析物与内标的峰面积比值计算校准 曲线。


方法参数

为了测定 GC/MS/MS 分析方法的线性和准确性,使用了 45 种 FAME 混标在己烷和混合人红细胞中的一系列稀释溶液。方法 的准确性同样用 45 种 FAME 混标在三个不同浓度范围内进行 评估。为了评估批内精度,对一份人血液混合样品的 10 个等分独立样品进行分析。以相同方式测定批间精度,但将样品分散在不同天中测定。使用在分析当天配制的校准标样测定浓度。计算精度的相对标准偏差 (RSD)。对人血样品的分析灵敏度重复测定 10 次。根据所选分析物的信噪比 (S/N) 计算检测限 (LOD) 和定量下限 (LLOQ)。使用 MassHunter 定性分析软件计算信噪比。

结果与讨论

GC/MS 分析

为比较 EI 和 CI 两种电离方法,在 FAME 分析中展示了二十二碳六烯酸甲酯(DHA,C22:6n3)的谱图。图 1A 中,采用 EI 的 GC/MS 谱图显示出大量低质量数碎片。m/z=67、m/z=79 和 m/z=99 等某些碎片是 LC-PUFA 的特征性碎片,而这些碎片不具有化合物特异性。采用 EI 碎裂方式后,通常无法检出 FAME 的分子离子。相反,采用 CI 时,GC/MS 谱图中主要的峰为分子离子([M+H]⁺),m/z=343(图 1B)。氨气用作 CI 的反应气,因此其他的主要峰为氨加合离子([M+NH₄]⁺),m/z=360。两种碎片都具有化合物特异性,因为 MS/MS 模式中消耗的氨($[M+NH_4]^+$ \rightarrow $[M+H]^+$)可用作定量离子对。

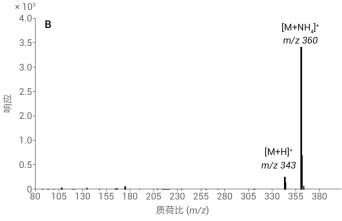


图 1. DHA 甲酯的 GC/MS 谱图, 电离方法比较。A) EI 谱图 B) CI 谱图

由于只有质子亲和力足够强的分析物能够被电离,与 EI 电离模式相比,CI 电离模式可降低化学背景浓度。

采用 CI 以及 MRM 模式下的 GC/MS/MS 是专为 FA 分析优化的方法,可在 9 分钟内完成分析。表 1 显示分析物特异参数。为实现正确的鉴定与定量,对母离子、保留时间以及定

性和定量碎片离子进行了测定。图 2 显示出无明显背景峰。图 2A 为 FAME 标样的 GC/MS/MS 色谱图。图 2B 和图 2C 为放大的两部分重叠峰。图 2B 显示了 3 个轻微重叠的分析物信号,而图 2C 为两个完全重叠的分析物离子示例。未发现妨碍分析物定量的干扰峰。

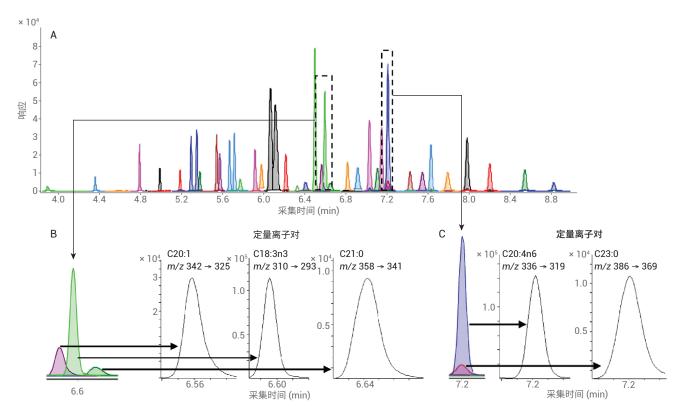


图 2. A) 45 种 FAME 的 GC/MS/MS 色谱图 B) 6.5-6.7 分钟间的放大色谱图以及对应的定量离子对。C) 7.1-7.3 分钟间的放大色谱图以及对应的定量离子对

方法验证

为获得 GC/MS/MS 方法的线性,对浓度由 5 ng/mL 到 20 mg/mL 的一系列 FAME 混标稀释溶液进行分析。所有分析 物的相关系数 (R^2) 均高于 0.995。还对基质中 45 种 FAME 的 系列稀释溶液进行了测定。所有分析物的 R^2 均高于 0.992,并且未发现基质干扰。另外,还使用三种不同浓度的 FAME

标样对准确度、LOD 和 LLOQ 进行了评估。所有分析物的准确度均在 90%-110% 间,LOD 和 LLOQ 均低至 ng/mL 级 (表 2)。将 10 种 FA 溶于 10 倍的人 RBC 混合样品中进行测定,通过计算 RSD 获得精度结果。10 种选定 FA 的批内与批间 RSD 均低于 10% (表 2)。

表 2.10 种选定 FA 的方法参数。日内与日间精度数据以总 FA 的百分比显示

脂肪酸	日内			日间			LOD		LOQ	
	均值		RSD	均值		RSD	ng/mL		ng/mL	
C16:0	25.2	±1.4	5.3	25.7	±2.1	8.0	6.3	±1.5	20.8	±2.1
C18:0	15.9	±0.7	4.7	15.0	±0.8	5.4	4.9	±1.2	16.3	±2.0
C18:1 顺式	18.2	±0.8	4.5	19.5	±1.0	5.3	4.2	±0.5	13.6	±1.6
C18:2 顺式	10.7	±0.3	2.6	11.8	±0.3	2.4	4.6	±0.4	15.2	±1.2
C20:3n6	1.5	±0.1	5.3	1.6	±0.1	6.5	0.9	±0.1	2.7	±0.8
C20:4n6	17.3	±0.9	5.1	15.8	±1.6	10.0	0.9	±0.1	3.1	±0.4
C20:5n3	0.4	±0.1	7.1	0.5	±0.1	8.7	1.9	±0.2	5.9	±0.8
C22:4n6	3.5	±0.3	8.5	3.7	±0.3	9.0	1.3	±0.1	4.3	±0.8
C22:5n3	2.2	±0.2	9.1	2.0	±0.2	8.6	1.6	±0.2	5.3	±0.9
C22:6n3	4.1	±0.3	6.2	4.1	±0.3	7.8	2.2	±0.2	7.3	±1.1

结论

本研究开发了一种用于测定从衍生化到 FAME 的整个过程生物基质中 FA 谱的 GC/MS/MS 分析方法。方法可在 9 分钟内完成 45 种 FA 谱的定量分析,并有良好的分析灵敏度与选择性。同时研究了其他参数,包括样品前处理步骤、方法稳定性以及 GC 和 MS/MS 条件。可认为该方法稳定且分析时间短,对 FA 分析有很广泛的适用性。

参考文献

- Boecking, C.; et al. Development and validation of a combined method for the biomonitoring of omega-3/-6 fatty acids and conjugated linoleic acids in different matrices from human and nutritional sources, Clin. Chem. Lab. Med. 2010, 48, 1757-1763
- Dodds, E. D.; et al. Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry, *Lipids* 2005, 40, 419–428

查找当地的安捷伦客户中心:

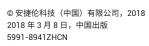
www.agilent.com/chem/contactus-cn

免费专线:

800-820-3278,400-820-3278 (手机用户)

联系我们:

LSCA-China_800@agilent.com


在线询价:

www.agilent.com/chem/erfq-cn

www.agilent.com

仅限研究使用。不可用于诊断目的。

本文中的信息、说明和指标如有变更,恕不另行通知。

