

Analyse d'acides aminés non dérivatisés par LC/MS pour la surveillance de cultures cellulaires en bioréacteur

Auteurs

Jordy Hsiao, Te-Wei Chu, Andrew Kennedy, Adam Bivens et Anne Blackwell

Résumé

La présente note d'application propose une solution d'analyse d'acides aminés dans des milieux de fermentation par LC/MS. La nature polaire des acides aminés rend difficile leur analyse par chromatographie liquide en phase inverse, c'est pourquoi la dérivatisation est souvent employée pour améliorer leur rétention. Cependant, la chromatographie par interaction hydrophile (HILIC) est capable de retenir et de séparer des mélanges complexes d'acides aminés sans dérivatisation, avec une procédure de travail similaire à la phase inverse traditionnelle. L'association de la technique HILIC et de la spectrométrie de masse offre une solution particulièrement simple et performante pour l'analyse des acides aminés non dérivatisés.

Introduction

Le suivi des nombreux composés polaires présents dans les bioréacteurs et les fermenteurs constitue une application réellement difficile pour la chromatographie par interaction hydrophile (HILIC). En se plaçant dans des conditions de pH élevé et avec une détection LC/MS en mode négatif, les acides aminés, les matières premières et les déchets peuvent être contrôlés en une seule et unique analyse. Sa stabilité dans les conditions de pH élevé fait de la phase AdvanceBio MS Spent Media Agilent la phase idéale pour séparer ces mélanges.

La reproductibilité des injections s'est révélée excellente malgré la matrice difficile. Les tests par des réacteurs à fibre creuse et à bouteille rotative ont mis en évidence la consommation de glucose et d'acides aminés ainsi que la sécrétion de lactate par les cellules en culture.

Données expérimentales

Réactifs et composés chimiques

Tous les réactifs étaient de qualité HPLC ou supérieure. L'acétonitrile de qualité Ultra LC/MS a été acheté auprès de J.T. Baker (Centre Valley, PA, États-Unis). L'eau a été purifiée à l'aide d'un système EMD Millipore Milli-Q Integral (Darmstadt, Allemagne). L'acide formique de qualité réactif (AF, réf. G2453-85060) provenait d'Agilent Technologies. Le formiate d'ammonium, l'acétate d'ammonium, l'hydroxyde d'ammonium et les étalons d'acides aminés ont été achetés chez Sigma-Aldrich (St Louis, MO, États-Unis). Le milieu à base de DMEM a été acheté auprès de Thermo Scientific (Waltham, MA, États-Unis). Les acides aminés ont été conservés à –70 °C jusqu'au jour de leur utilisation.

Équipements et matériaux

- Raccords Agilent InfinityLab
 - Entrée de colonne : Agilent Quick Connect (réf. 5067-5965)
 - Sortie de colonne : Agilent Quick Connect (réf. 5067-5966)
- Flacon Agilent, à visser, ambré, avec plage d'écriture, certifié, 2 mL, 100/pqt (réf. 5182-0716)
- Capsule à visser Agilent avec septum solidaire en PTFE/silicone rouge (réf. 5190-7024)
- Insert pour flacon Agilent, 250 µL, en verre désactivé avec pieds en polymère (réf. 5181-8872)
- Répéteur et pipettes Eppendorf
- Ultracentrifugeuse (VWR, Radnor, PA, États-Unis)

- Agitateur et agitateurs vortex multi-tubes (VWR, Radnor, PA, États-Unis)
- Flacon de solvant en PEHD (VWR, Radnor, PA, États-Unis)
- Bioréacteur à bouteille rotative (Sigma-Aldrich, St. Louis, MO, États-Unis)
- Bioréacteur à fibre creuse (FiberCell Systems, New Market, MD, États-Unis)

Instruments

- Pompe binaire 1290 Infinity II Agilent (G7120A)
- Échantillonneur en mode flacons 1290 Infinity II Agilent (G7129B)
- Thermostat multicolonnes 1290 Infinity II Agilent (G7116B)
- Kit de dispersion ultra-faible pour gamme LC 1290 Infinity Agilent (5067-5189)
- Spectromètre de masse quadripôle à temps de vol (Q-TOF) 6545 Agilent
- Source d'ionisation électrospray Jet Stream Agilent

Logiciel

Logiciel Agilent MassHunter Workstation B.08.00

Préparation des échantillons

Les échantillons de culture cellulaire ont été dilués par 4 avec de l'acétonitrile à 50 % puis centrifugés à 10 000 x g pendant 10 minutes. Le surnageant a été recueilli et injecté sans autres préparations de l'échantillon.

Phase mobile

Une solution mère d'acétate d'ammonium 100 mM a été préparée dans l'eau puis ajustée à pH 9 avec de l'hydroxyde d'ammonium. La phase mobile A a été préparée en diluant la solution mère à 9:1 dans de l'eau. La phase mobile B a été préparée en diluant la solution mère à 9:1 dans de l'acétonitrile. La concentration finale de l'acétate d'ammonium dans les deux phases mobiles était de 10 mM.

Il a été montré qu'une exposition prolongée de la phase mobile au verre génère des espèces ioniques qui interfèrent et réduisent le signal en MS. Les phases mobiles conservées dans des récipients en verre doivent être changées régulièrement ou transférées dans des flacons en PEHD.

Conditions relatives à l'instrument

Conditions de l'HPLC				
Colonne	AdvanceBio MS Spent Media Agilent, 2.1 × 150 mm (réf. 673775-901)			
Phase mobile A	10 % (acétate d'ammonium 100 mM dans l'eau à pH = 9) / 90 % d'eau			
Phase mobile B	10 % (acétate d'ammonium 100 mM dans l'eau à pH = 9) / 90 % d'acétonitrile			
Gradient	Temps (min) % B 0 90 2 90 12 40 13 20 16 20 17 90 25 90			
Débit	0,25 mL/min			
Température de colonne	30 °C			
Volume d'injection	1 μL			
Temps total d'analyse	25 minutes			
	Conditions de la MS			
Mode d'ionisation	ESI négatif			
Température du gaz	200 °C			
Débit	10 L/min			
Nébuliseur	40 psi			
Température du gaz Jet Stream	300 °C			
Débit du gaz Jet Stream	12 L/min			
Tension du capillaire	3 000 V			
Tension de la buse	0 V			
Tension de fragmentation	125 V			
Tension du cône écrêteur	65 V			
Vpp Oct RF	750 V			
Paramètres d'acquisition	Les données ont été obtenues sur la gamme de masse 50–1 000 <i>m/z</i> avec gamme dynamique étendue (2 GHz)			

Conditions relatives au bioréacteur

Paramètre	Valeur	
Formats de bioréacteur	Bioréacteur à bouteille rotative Bioréacteur à fibre creuse	
Lignée cellulaire	Cellules ovariennes de hamster chinois (CHO)	
Milieux de culture	Milieux de croissance à base de DMEM	
Température	30 °C	

Tableau 1.	Composition de la	a matrice de	culture cellulaire
(milieux de	croissance à bas	e de DMEM)	

Composant	Concentration (mg/L)
Glycine	30,0
Chlorhydrate de L-arginine	84,0
L-Cystine 2HCl	63,0
L-Glutamine	584,0
Chlorhydrate de L-Histidine -H ₂ O	42,0
L-Isoleucine	105,0
L-Leucine	105,0
Chlorhydrate de L-lysine	146,0
L-Méthionine	30,0
L-Phénylalanine	66,0
L-Sérine	42,0
L-Thréonine	95,0
L-tryptophane	16,0
Sel disodique dihydraté de L-Tyrosine	104,0
L-Valine	94,0
Chlorure de choline	4,0
D-Pantothénate de calcium	4,0
Acide folique	4,0
Niacinamide	4,0
Chlorhydrate de pyridoxine	4,0
Riboflavine	0,4
Chlorhydrate de thiamine	4,0
<i>i</i> -Inositol	7,2
Chlorure de calcium (CaCl $_2$) (anhydre)	200,0
Nitrate ferrique (Fe(NO ₃) ₃ *9H ₂ O)	0,1
Sulfate de magnésium (MgSO₄) (anhydre)	97,67
Chlorure de potassium (KCl)	400,0
Bicarbonate de sodium (NaHCO₃)	3 700,0
Chlorure de sodium (NaCl)	6 400,0
Phosphate de sodium monobasique (NaH ₂ PO ₄ *H ₂ O)	125,0
D-Glucose (Dextrose)	4 500,0
Rouge de phénol	15,0
Pyruvate de sodium	110,0

Résultats

Figure 2: Analyse des milieux de culture cellulaire indiquant une consommation d'acides aminés. Les milieux de croissance ont été additionnés de glutamine 6 mM dans le bioréacteur à fibres creuses, ce qui explique pourquoi le taux de glutamine était plus élevé dans le bioréacteur à fibres creuses que dans les milieux de croissance de contrôle et le bioréacteur à bouteille rotative appauvri en nutriments.

Figure 3 : Analyse des milieux de culture cellulaire indiquant une consommation de glucose et une sécrétion de lactate.

Tableau 2. Temps de rétention des milieux de culture cellulaire et
ion prédominant pour chaque analyte.

Analyte surveillé	Temps de rétention (min)	lon précurseur (m/z)
Phénylalanine	3,55	164,072
Lactate	3,95	89,024
Leucine	3,98	130,087
Tryptophane	3,98	203,083
Isoleucine	4,35	130,087
Méthionine	4,53	148,043
D-glucose (alpha)	4,87	179,056
Tyrosine	4,91	180,066
D-glucose (bêta)	5,13	179,056
Valine	5,19	116,071
Glycine	6,28	74,0247
Thréonine	6,29	118,051
Glutamine	6,67	145,06
Sérine	6,73	104,03
Histidine	6,75	154,062
Arginine	12,53	173,104
Lysine	13,01	145,098

Conclusions

Les acides aminés présents dans les milieux utilisés ont été analysés avec succès par HILIC-MS en mode d'ionisation négatif. Les isobares leucine/isoleucine généralement difficiles à analyser ont été séparées de la ligne de base, avec une résolution de 1,6. De par leur nature zwittérionique, les acides aminés s'ionisent facilement en modes d'ionisation positif et négatif, mais le mode négatif en condition de pH élevé a permis d'analyser simultanément les milieux cellulaires, les matières premières et les déchets de cellules.

www.agilent.com/chem

Ces informations peuvent être modifiées sans préavis.

© Agilent Technologies, Inc. 2018 Imprimé aux États-Unis, le 29 janvier 2018 5991-8816FR

