

Low-Energy El 기능, 고분해능 Accurate Mass GC/Q-TOF를 이용한 추출 및 침출(E&L) 화합물 분석

응용 개요

저자

Kevin Rowland¹, Mark Jordi¹, Kai Chen², Jennifer Sanderson²

¹ Jordi Labs

Mansfield, Massachusetts

² Agilent Technologies, Inc. Santa Clara, California

서론

정확한 화합물 식별은 추출물 및 침출물(E&L) 연구에 있어 매우 중요합니다 [1]. 다양한 종류와 농도의 화학물질을 포함한 E&L 추출물의 복잡성은 화합물 식별을 까다롭게 합니다[2]. E&L 연구에서의 GC 분석 가능 부분은 일반적으로 NIST GC/MS 라이브러리 검색으로 화합물을 식별하는 표준 EI 전체 스캔 모드의 단위 질량 GC/MS로 수행합니다. 라이브러리 매치 스코어에 확신이 없는 검출 화합물에 대해, 이 기법은 제한된 정보만을 제공합니다.

본 연구는 향상된 유연성과 확신으로 E&L 화합물을 연구하기 위한 새로운 도구로서 저 에너지 EI 기능 이온화원을 갖춘 고분해능 accurate mass GC/Q-TOF를 제시합니다.

그림 1. Agilent 7250 시리즈 GC/Q-TOF 시스템.

실험

기기 분석

Agilent 7250 시리즈 GC/Q-TOF 시스템(그림 1)으로 시료 추출물과 대조군을 분석하였으며, 운용 조건은 표 1에 나열하였습니다. *n*-alkanes를 주입하여 수집 분석법의 머무름 인덱스(RI)를 검량하였습니다.

# 1	∆ailent	7250	GC/O-	TOF	우요	조거
ш і.	Aylient	1250	60/Q-	TOF	せつ	<u> </u>

파라미터	값
컬럼	Agilent DB-5 MS UI, 15m × 0.25mm, 0.25µm
주입구	S/SL, 310°C
운반 가스	1.5mL/분, 헬륨
오븐 프로그램	5분간 50°C 10°C/분으로 320°C까지, 10분간 유지
이송 라인	280°C
이온화원 모드	El, 70eV, 10~15eV
이온화원 온도	200°C
사중극자 온도	150°C
스펙트럼 범위	50~1,000 <i>m/z</i>

데이터 분석

SureMass 신호 처리[3]를 사용하고 NIST 14 GC/MS 라이브러리와 매칭하는 Agilent MassHunter Unknowns Analysis B.08.00으로 화합물 식별을 시작했습니다(그림2). 식별 화합물의 화학식은 표준 EI와 저 에너지 EI 스펙트럼을 비교하여 연구하였습니다. Agilent MassHunter Qualitative Analysis B.08.00은 필요한 경우, MS와 MS/MS 질량 스펙트럼을 검토하기 위해 사용하였습니다. 미지 물질 후보의 MS/MS 스펙트럼 기반 구조 해석을 위해 Agilent MassHunter Molecular Structure Correlator B.08.00을 사용하였습니다. 시료 그룹 간 차이 분석에는 Agilent Mass Profiler Professional(MPP) B.13을 사용하였습니다.

그림 2. SureMass 피크 검출 및 라이브러리 매칭을 위한 Agilent MassHunter Unknowns Analysis 소프트웨어.

시료 제조

37°C에서 72시간 동안, 식염수를 이용한 flow-through 추출법으로 완전히 조립한 일회용 바이오프로세스 시스템을 추출하였습니다. 식염수 용액은 증류수 200mL 당 인산염 완충 식염수 정제(Sigma) 한 개를 첨가하여 137mH NaCl, 2.7mM KCl, 10mM 인산염 완충액(pH 7.4, 25°C)을 준비하였습니다. 추출 용매 간 차이를 입증하기 위해 에탄올과 물/에탄올(1:1) 용액으로 장치의 필터를 추출하였습니다. 모든 추출 시험을 위해 대조군 바탕을 준비하였습니다. 각 추출 용액(에탄올 제외)은 동일한 부피의 dichloromethane으로 추출한 후, GC/Q-TOF 분석을 위해 10배 농축하였습니다.

결과 및 토의

식염수 추출물 vs 대조군 바탕

MPP 소프트웨어를 사용하여 시료와 대조군 간의 차이 분석을 수행하였으며, 대표적인 데이터 세트로 식염수 추출물 결과를 표기하였습니다. 결과는 대조 바탕 대비 배율 변화≥3과 P값≥0.05인 전체 장치의 식염수 추출물에 존재하는 113종 화합물을 나타냅니다(그림 3). 표 2는 존재비가 높은 성분의 목록입니다.

그림 3. 식염수 추출물에 상당량 존재하는 화합물을 나타내는 Volcano Plot(오른쪽 상단).

표 2. 식염수 추출물의 화합물 식별 목록(상위 목록).

화합물	화학식*	RI	질량차 (mDa)
Caprolactam	C ₆ H ₁₁ NO	1,268	0.2
Phenol	C ₆ H ₆ O	978	0.0
Tri(1,2-propyleneglycol), monomethyl ether	$C_{10}H_{22}O_4$	1,315	0.0
Dowanol 62b isomer 1	C ₁₀ H ₂₂ O ₄	1,291	-0.2
Dowanol 62b isomer 2	C ₁₀ H ₂₂ O ₄	1,294	-0.2
Dowanol 62b isomer 3	C ₁₀ H ₂₂ O ₄	1,289	0.0
Tentative ID compound	C ₉ H ₁₂ O ₄	1,572	0.5
Dowanol 62b isomer 4	C ₁₀ H ₂₂ O ₄	1,286	-0.1
Benzoic acid, 4-ethoxy-, ethyl ester	C ₁₁ H ₁₄ O ₃	1,527	0.1
Tentative ID compound	$C_{12}H_{15}N_{3}O_{3}$	1,659	0.2
Vanillin	$C_8H_8O_3$	1,399	-0.1
Hexanamide	$C_6H_{13}NO$	1,144	-0.2
Tentative ID compound	C ₈ H ₁₂ O ₃	1,403	0.1
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca- 6,9-diene-2,8-dione	$C_{17}H_{24}O_{3}$	1,908	-0.2
Tentative ID compound	C ₁₅ H ₂₂ O	1,476	0.4
Ethylparaben	$C_9H_{10}O_3$	1,522	0.2
2-Pyrrolidinone, 1-methyl-	C₅H₀NO	1,040	0.3
2,4-Di-tert-butylphenol	C ₁₄ H ₂₂ O	1,507	0.0
Tentative ID compound	C ₈ H ₈ O	1,069	-0.2
2-Imidazolidinone, 1,3-dimethyl-	$C_{5}H_{10}N_{2}O$	1,109	0.3
Acetamide, N-cyclohexyl-	C ₈ H ₁₅ NO	1,292	0.2
Butoxyethoxyethanol	C ₈ H ₁₈ O ₃	1,187	-0.2
Di-t-butylhydroquinone	$C_{14}H_{22}O_{2}$	1,467	0.0
2-Phenylisopropanol	$C_9H_{12}O$	1,088	-0.3
Tentative ID compound	$C_{5}H_{12}O_{2}$	1,014	0.1
Benzothiazole	C ₇ H₅NS	1,232	0.2
Dimethyl phthalate	$C_{10}H_{10}O_4$	1,452	0.1
Tentative ID compound	C ₁₃ H ₂₀ O ₂	1,349	0.5

* 식별 화합물의 화학식은 표준 EI와 저 에너지 EI 모드의 스펙트럼을 비교하여 확인하였습니다(또는 잠정적인 ID 화합물 제시).

추출 용매의 영향

다양한 추출 용매 사용이 전체 추출물 프로파일에 미치는 영향을 연구하기 위해 필터 추출물을 평가하였습니다 (그림 4). 벤 다이어그램은 이러한 결과를 쉽게 시각화할 수 있으며, 각 추출물에서 검출된 공통 및 고유한 추출물 모두를 보여줍니다.

저 에너지 EI 연구

저 에너지 EI 시험은 그림 5와 같이 스펙트럼 분자 이온 (M⁺)의 보존이나 확인 가능성을 높여줍니다. 이러한 시험은 라이브러리 검색 결과가 만족스럽지 않을 때 잠정적인 화합물 식별을 위한 추가 정보를 제공할 수 있습니다.

그림 6은 저 에너지 EI와 Q-TOF MS/MS를 이용한 미지 화합물(2가지 용매 추출 그룹의 공통 화합물) 연구를 위한 워크플로입니다. 가능한 후보 물질은 benzenemethanol 파생물입니다.

그림 7은 에탄올 추출물의 고유하고 많은 alkane 화합물의 확실한 식별에 저 에너지 El 스펙트럼이 도움이 됨을 보여줍니다.

결론

- 저 에너지 EI는 M⁺의 보존이나 확인 가능성을 높이며, accurate mass MS/MS 스펙트럼은 미지 화합물 구조 해석에 중요한 정보를 제공합니다.
- Accurate mass 측정과 RI 검량은 화합물 식별에 대한 신뢰도를 높일 수 있습니다.
- 차이 분석은 시료 그룹 간 E&L 화합물의 비교를 용이하게 합니다.

그림 5. 저 에너지 EI는 매치 스코어 92.6으로 확실하게 식별된 화합물 스펙트럼의 M⁺ 상대 존재비를 높여줍니다(RI: 1908).

그림 6. 저 에너지 EI를 이용한 미지 화합물 연구 및 Agilent MassHunter Molecular Structure Correlator를 이용한 가능한 후보물질의 구조 해석.

그림 7. n-alkane의 저 에너지 El(12eV) 스펙트럼. M⁺ 클러스터는 우수한 질량 정확도와 동위원소 정확도를 나타냅니다.

참고 문헌

- D. Jenke. "Development and Justification of a Risk Evaluation Matrix to Guide Chemical Testing Necessary To Select and Qualify Plastic Components Used in Production Systems for Pharmaceutical Products" PDA J. Pharma. Sci. Technol. 69, 677–712, (2015).
- 2. A. Mire-Sluis, *et al.* "Extractable and Leachables. Challenges and Strategies in Biopharmaceutical Development" BioProcess Int., Feb (2011).
- Agilent SureMass, Agilent Technologies Technical Overview, publication number 5991-8048EN (2017).

자세한 정보

이 데이터는 일반적인 결과를 나타냅니다. 애질런트 제품 및 서비스에 대한 자세한 정보는 애질런트 웹사이트 (www.agilent.com/chem)를 방문하십시오.

www.agilent.com/chem

애질런트는 이 자료의 오류 또는 장비의 설치, 성능, 이 자료의 사용 등과 관련된 사고나 결과적 손상에 대해 법적 책임을 지지 않습니다.

이 발행물의 정보, 설명 및 사양은 사전 고지 없이 변경될 수 있습니다.

RA.1096759259

© Agilent Technologies, Inc. 2017, 2020 한국에서 발행 2020년 10월 26일 5991-8198KO 한국애질런트테크놀로지스㈜ 대한민국 서울특별시 서초구 강남대로 369, A+ 에셋타워 9층,06621 전화: 82-80-004-5090 (고객지원센터) 팩스: 82-2-3452-2451 이메일: korea-inquiry_lsca@agilent.com

Agilent Technologies