

使用 Agilent 8800 电感耦合等离子体串联质谱仪分析 NMP 中痕量的硫、磷、硅和氯

应用简报

半导体

作者

Naoki Sugiyama 安捷伦科技有限公司, 日本东京

前言

N-甲基-2-吡咯烷酮 (NMP), 化学分子式为 C₅H₉NO, 是一种化学性质稳定的水 溶性有机溶剂, 广泛应用于制药、石化、高分子科学, 特别是半导体行业中。 电子级 NMP 通常被半导体生产商用作晶片清洗剂和光刻胶剥离剂, 以及用作和 晶片表面直接接触的溶剂。这就要求 NMP 中金属(和非金属) 污染物的含量 尽可能地低。ICP-MS 是测定半导体工艺化学品中痕量金属杂质的首选技术。但 对 ICP-MS 技术而言, 测定 NMP 中的非金属杂质如硫、磷、硅和氯却是个挑 战。这些元素较低的电离效率大大降低了分析信号的强度, 与此同时, 由 NMP 基质中的 N、O 和 C 元素形成的多原子离子造成的高背景信号(计为背景等效 浓度, BEC) 使这一痕量检测更加雪上加霜。

电感耦合等离子体串联质谱仪的高灵敏度和强大的消干扰 能力使它特别适合于应对这一应用的挑战。本应用介绍 了 Agilent 8800 电感耦合等离子体串联质谱仪 (ICP-MS/MS) 在 MS/MS 模式下,测定 NMP 中的 S、P、Si 和 CI。

应用注意事项

正如上文所述,因为待测元素的电离效率很低,或者同时 受到来自 NMP 基体中多原子离子的严重干扰,这一应用 极富挑战性。如表 1 中所示,应用 ICP-MS 非反应池模式 测得的 BEC 都在 ppm 级范围内。S、P 和 CI 的离子化效 率很低(其中 CI 的离子化率不足 1%),而 Si (BEC > 100 ppm)的峰形和高强度的 N₂ 及 CO 峰相重叠。虽然传统 的四极杆 ICP MS (ICP-QMS) 在反应池模式下可以在某种程 度上减少这种干扰,但 BEC 的水平仍保持在几百 ppb 到几 ppm,无法满足半导体工业测量水平的要求。

表 1. ICP-QMS 测定 NMP 中特定分析物的 BEC (非反应池模式)

元素	m/z	电离势 (eV)	离子化率 (%)	非反应池模式下 的 BEC (ppm)	干扰离子
Si	28	8.152	87.9	>100	$^{14}N_{2}^{+}$, $^{12}C^{16}O^{+}$
Р	31	10.487	28.8	0.39	¹⁴ N ¹⁶ OH ⁺ , COH ₃ ⁺
S	32	10.360	11.5	9.5	¹⁶ 0 ₂ ⁺ , NOH ₂ ⁺
CI	35	12.967	0.46	0.26	¹⁶ 0 ¹⁸ 0H ⁺

实验

试剂和样品制备

半导体级 NMP 购自 Kanto Chemical 公司 (Kusaka-shi, 日本), 经过 120 °C 亚沸蒸馏进一步纯化后,将 NMP 样 品用高纯 HNO₃ (Tamapure 100 纯度级别,购自 TAMA Chemicals 公司,Kawasaki-shi,日本)酸化,配成 1% (质量浓度)的 HNO₃ 溶液。经过酸化的 NMP 直接用于分析 (无需进一步的处理或稀释),用标准加入法 (MSA) 测定 S、 P、Si和 Cl。S、P、Si 的单元素标准品购自 Kanto Chemical 公司, CI 标准品用 NaCI (Wako Pure Chemicals Industries 公司,大阪,日本)制备。

仪器

采用 Agilent 8800 电感耦合等离子体串联质谱仪半导体行业 专用配置(铂接口锥和高效传输离子透镜)测定。使用内 径为 1.5 mm 的有机专用炬管 (G3280-80080) 代替 2.5 mm 标准口径的 ICP 石英炬管,降低了有机基质产生的等离子 体负载。采用 C-flow 200 PFA 雾化器 (G3285-80000) 在载 气 (CRGS) 流量 0.50 L/min 下以自吸模式进行雾化。可以 选择在载气中通入 20% 的 0,,以防止在接口锥形成积碳。

然后对等离子体和反应池的参数进行优化, 以获得适于该 应用的最佳性能。

等离子体调谐—参数优化

图 1 为 1ppb Co 分别加标到水溶液和 NMP 中得到的信 号图,二者均预先经 1% HNO₃ 酸化,以 Co 信号对补偿气 (MUGS) 流量的变化绘制曲线。

图 1. 1 ppb Co 在 1% HNO₃ 中和酸化 NMP 中的信号强度随 MUGS 流速变化的 曲线

适合 NMP 基体分析的最佳 MUGS 流量为 0.20L/min, 低 于适合 1% HNO₃ 基体的最佳流量, 且 NMP 样品中 Co 的 灵敏度大约比 1% HNO₃ 中低 4 倍。这是因为 NMP 中的严 重的有机基质吸收了等离子的能量, 从而降低了其离子化 性能。表 2 汇总了分析 NMP 所选的等离子体条件。

表 2. NMP 分析的等离子体条件

参数	单位	数值
RF	W	1550
采样深度	mm	8.0
载气流量	L/min	0.50
补偿气流量	L/min	0.10
选择气流量	L/min	0.12(占满量程的 12%)
雾化室温度	°C	0

反应池调谐 — 参数优化

在八极杆反应池 (ORS³) 中, 氢气 (H₂) 和氧气 (O₂) 均被用作 反应气。除非另有说明,分析均采用 MS/MS 模式,也就 是将位于碰撞/反应池前的第一个四级杆 (O1) 作为质量过滤 器,只允许某一个质荷比的离子通过并进入反应池。表 3 中总结了反应池的各调谐参数(气体流量和电压)。"原 位质量"表示直接对分析物的原始质量进行测量,"质量 转移"表示使分析物在反应池中与某一反应气发生反应, 生成一个新质量数的产物离子,然后对这个新的产物离子 进行测量,通过质量转移的方法,避开原质量数的干扰。

表 3. 反应池调谐参数

参数	单位	0 ₂ 反应池		H ₂ 反应池	
测量模式	-	原位质量	质量转移	原位质量	质量转移
反应池气体	-	02		H ₂	
气体流量 mL/min		0.30		4.0	
八极杆偏转透镜	V	-14		-10	
八极杆 RF	V	180			
KED V		-5	-5	0	-5

结果和讨论

NMP 中的 P 和 S

使用 O_2 反应气的质量转移模式测定 NMP 中的 P 和 S 非常 有效。P 和 S 与 O_2 之间的反应为放热反应, ΔH 为负值, 如下面的公式所示 [1], 因此, P⁺ 和 S⁺ 可以很高效地 [2] 转化成它们的氧化物离子 PO⁺ 和 SO⁺, 可以通过测量这些 产物离子测定 P 和 S, 从而避开了在原始质量数 m/z 31 和 m/z 32 上的干扰。

$$P^+ + 0_2 \rightarrow P0^+ + 0$$
 ΔHr = -3.17 eV,
kr = 4.9 x 10⁻¹⁰ cm³/s/分子量

$$S^+ + O_2 \rightarrow SO^+ + O \qquad \Delta Hr = -0.34 \text{ eV},$$

图 2 和图 3 为使用 0₂ 反应气的质量转移模式测定 NMP 中 的 P 和 S 的校准曲线。为了验证 ICP-MS/MS 所特有的 MS/MS 模式的优势,研究分别采用单四级杆 (SQ) 和串 联MS/MS 两种模式进行。在 SQ 模式中,Q1 仅起到离子 导杆的功能,模拟传统的单四级杆 ICP-MS (ICP-QMS)。 在 MS/MS 模式中,将 Q1 固定在某待测质量数处 (P 为 *m/z* 31, S 为 *m/z* 32),只有此待测离子和原位质量的 干扰离子 (那些与分析物具有相同质荷比的离子)可以通 过并进入反应池。 图 2 为 SQ 模式下 P 和 S 的校准曲线, 图 3 为 MS/MS 模 式下 P 和 S 的校准曲线。正如我们所看到的, P 和 S 在 MS/MS 模式的 BEC 明显低于 SQ 模式。采用 MS/MS 模 式, 以 O₂ 为反应气,通过质量转移方法测定 NMP 中的 P 和 S, BEC 分别为 0.55 ppb 和 5.5 ppb。

MS/MS 模式中, P 的 BEC 比 SQ 模式低 1 个数量级, 而 S 的 BEC 比 SQ 模式低 2 个数量级, 使用 MS/MS 模式对 S 的分析效果提高得更为显著, 这是因为在 SQ 模式下, 等

P(上图)和S(下图)的校准曲线

离子体气体衍生出的离子 ArC⁺ 在 *m/z* 48 处会和 SO⁺ 形成 重叠,而 MS/MS 模式中,ArC⁺ 离子在进入反应池前就被 Q1 阻挡,从而消除了对 SO⁺ 的干扰。这充分证明了 ICP-MS/MS 中 MS/MS 模式的独特性能,能够充分利用反应 化学的全部潜能进行干扰消除。MS/MS 模式中获得的低 BEC 和良好的线性曲线同时也表明,在 MS/MS 模式下, 来自基质的干扰不会和 O₂ 发生反应,从而能将分析物和干 扰分离。

图 3. MS/MS 扫描, 0₂ 质量转移模式测定 NMP 中 P(上图)和 S(下图)的 校准曲线

NMP 中的 Si

测定 NMP 中的 Si 时,同时采用了 H_2 和 O_2 作为反应气体。Si 及其主要干扰物与 H_2 发生反应的反应动力学方程如下所示。反应速率的数据表明,Si 不与 H_2 发生反应(Δ H 值为正,即为吸热反应),因此可以通过原位质量的方法 直接对 Si 进行测量。虽然 Si⁺ 与 H_2 的反应是吸热反应, 但在质量数 28 上 Si 的主要干扰离子(N_2^+ 和 CO⁺)与 H_2 的反应是放热反应,因此这些干扰离子可以被中和或通过 反应消除掉。

Si⁺ + H₂ → SiH⁺ + H Δ Hr = 1.30eV, kr = 5 x 10⁻¹³ cm³/s/分子量 N₂⁺ + H₂ → HN₂⁺ + H Δ Hr = -0.60 eV, kr = 2.1 x 10⁻⁹ cm³/s/分子量 CO⁺ + H → COH⁺ + H Δ Hr = -1.63eV

同样, 对氧气作为反应气的模式进行了测试。如下所示, Si⁺和 O_2 形成 SiO⁺ 的反应是吸热反应。然而反应池中的碰撞过程为该反应提供了额外的能量, 从而可以进行 O_2 反应气的质量转移模式测定。

 $Si^+ + O_2 \rightarrow SiO^+ + O \qquad \Delta Hr = 0.11eV$

但不利的是, 在 m/z 28 处会对 Si 造成主要干扰的 CO⁺ 同 样也会和 O₂ 发生反应, 所以, O₂ 质量转移模式下以 SiO⁺ 代替 Si (Q1 = 28, Q2 = 44) 进行测定得到的 BEC 并不理 想。但幸运的是,反应还生成了的另一产物离子 (SiO₂⁺), 可以在 m/z 60 (Q1 = 28, Q2 = 60) 的质量数下进行测 量,结果令人满意,如图 4 所示。

实验结果见图 5(上图)。 H_2 原位质量方法测定 NMP 中的 Si 得到的 BEC 为 15.8 ppb, O_2 质量转移方法通过 Si O_2^+ 测 定 NMP 中的 Si 得到的 BEC 为 11.9 ppb(图 5,下图)。

图 5. NMP 中 Si 的校准曲线。上图: H₂ 原位质量方法 (Q1=Q2=28); 下图: 0,质量转移方法 (Q1=28, Q2=60)

NMP 中的 CI

CI⁺ 与 H₂ 通过放热反应生成 HCI⁺,如下所示。HCI⁺ 继续 进行链式反应生成 H₂CI⁺。初步实验的结果表明,相对于与 O₂ 反应生成 CIO⁺,与 H₂ 的反应生成 H₂CI⁺ 的效率更高, 因此,在测定 NMP 中的 CI 时,采用了 H₂ 质量转移的方 法(O1 = 35, O2 = 37)。 CI⁺ + H₂ → HCI⁺ + H AHr = -0.17eV.

$$H_2 \rightarrow HCI^+ + H \qquad \Delta Hr = -0.17 eV,$$

kr = 9.2 x 10⁻¹⁰ cm³/s/分子量

$$HCI^+ + H_2 \rightarrow H_2CI^+ + H \qquad \Delta Hr = -0.39 eV,$$

kr = 1.3 x 10⁻⁹ cm³/s/分子量

图 6(上图)为使用 H₂ 质量转移的方法测定 NMP 中 CI 的 校准曲线。同时还绘制了 O₂ 质量转移方法下的曲线(图 6, 下图)以便进行比较。使用 H₂ 质量转移的方法测定 NMP 中 CI 得到的 BEC 为 34.2 ppb,略优于 O₂ 质量转移方法。

图 6. NMP 中 CI 的校准曲线。上图: H₂ 质量转移方法 (Q1=35, Q2=37); 下图: O₂ 质量转移方法 (Q1=35, Q2=51)

表 4 总结了不同方法下测定各分析物的 BEC, 但仅列出了 每个分析物 BEC 数值最低的方法。对于每个分析物, 质量 转移方法得到的结果都优于原位质量方法的结果, 并且除 CI 外, 都采用 O₂ 作为反应池反应气。除 CI 外, 所有分析 物的检出限均在几十到几百个 ppt 之间。CI 元素检测的局 限在于它的离子化程度非常低, 但还是获得了几个 ppb 的 检出限。在日常分析中, 可以通过设定自动化的方法, 一 次进样, 就可同时测定多种元素。

表 4. NMP 中分析物的 BEC 和 DL 结果汇总

元素	方法	01	02	产物离子	BEC ppb	DL ppb
Р	0 ₂ 质量转移	31	47	P0⁺	0.55	0.06
S	0 ₂ 质量转移	32	48	\$0⁺	5.47	0.25
Si	0 ₂ 质量转移	28	60	SiO ₂ ⁺	11.9	0.48
CI	H ₂ 质量转移	35	37	CIH2+	34.2	3.61

结论

S、P、Si和CI对四级杆 ICP-MS 分析都是极具挑战性的元 素,而对 NMP 这样的有机基质,这些元素的检测会更加 困难。使用 Agilent 8800 电感耦合等离子体串联质谱仪, 在其独特的 MS/MS 模式下采用质量转移方法,对所有分 析物都获得了很低的 BEC,充分展示了 ICP-MS/MS 在 应对 ICP-MS 领域最具挑战的应用中表现出的灵活性和优越 的性能。

参考文献

- Agilent 8800 电感耦合等离子体串联质谱仪:认识 ICP-MS/MS 的氧气反应模式),安捷伦出版号 5991-1708CHCN。
- Gas phase ion-molecule reaction rate constants through 1986, Yasumasa Ikezo, Shingo Matsuoka, Masahiro Takebe and Albert Viggiano, Maruzen Company Ltd.

www.agilent.com/chem/cn

安捷伦对本资料可能存在的错误或由于提供、展示或使用本资料所造成的间接损失不承担任 何责任。

本资料中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2013 中国印刷,2013年4月19日 5991-2303CHCN

