

摘要

本應用報告證明:

- Agilent 6520 精確質量四極柱-飛行時間(Q-TOF)液相層析質譜儀(LC/MS) 和 Agilent 6220 精確質量飛行時間(TOF)液相層析質譜的性能
- Agilent 6520 精確質量 Q-TOF LC/MS 和 Agilent 6220 精確質量 TOF LC/MS 的動態範圍和質量解析度都得到了提高
- 這兩種系統在質量分析和分子量計算方面具有很高的準確性
- 儀器性能的提高對樣品檢測結果的影響

Agilent Technologies

Agilent 儀器

- •1200系列快速解析液相色譜系統
- •6520 精確質量 Q-TOF LC/MS
- 6220 精確質量 TOF LC/MS

應用領域

- 制藥工業
- 法醫分析
- 環境分析
- 食品分析

<u>引言</u>

質譜儀中,解析能力和動態範圍與質量精 確度之間不存在直接關係。例如,當進行 合成化合物的結構確證時,解析能力達到 200,000 以上的傅立葉變換(FT) 質譜儀,其質量精確度一般僅比解析度為 10,000 的飛行時間(TOF)質譜儀高出 2 倍。對於 Agilent TOF 和 Q-TOF, 當分析純化合物時,解析度提高 2~3 倍,其質量精確度並沒有表現出明顯改 善。然而,當分析複雜的混合物時,結 果卻截然不同。本文通過研究證明,複 雜混合物分析中當化合物的子離子質量 數非常接近時(分離度 < 50 mDa), TOF 和 Q-TOF 解析度和動態範圍的 提高將如何對質量精確度產生影響。

<u> 實驗部分</u>

儀器

Agilent 1200 系列快速解析分離液相 層析系統包括:

- Agilent 1200 系列 SL 型二元泵和 除氣機
- Agilent 1200 系列 SL 型高效自動 進樣器(ALS SL),含恒溫裝置
- Agilent 1200 系列柱溫箱(TCC)
- Agilent 系列 SL 型二極體陣列偵測 器(DAD SL)
- Agilent 6220 精確質量 TOF LC/MS 或 Agilent 6520 精確質量 Q-TOF LC/MS
- 層析管柱 1 : Agilent ZORBAX SB-C18, 2.1 x 30 mm, 粒徑 3.5 μm
- 層析管柱 2: Agilent ZORBAX SB-C18, 2.1 x 150 mm, 粒徑 1.8 µm

待測化合物的結構和分子式

樣品

待測化合物 5-乙醯水楊酸甲酯(methyl 5-acetylsalicylate, MAS)、對羥基苯 甲酸丁酯(butyl 4-hydroxybenzoate, BP)、磺胺二甲氧嘧啶(sulfadimethoxine)和奈法唑酮(nefazodone)均購自 Sigma-Aldrich,以甲醇溶解並製成濃度 為 1 mg/mL 的儲存液。1 mg/mL 的司 坦唑醇(Stanozolol)甲醇溶液購自 Alltech。所有溶液加水稀釋至濃度為 10~30 ng/μL。製備了一系列奈法唑 酮的稀釋液,濃度範圍為 2 ng/mL 到 100 μg/mL。(進樣量為 1 μL。)化 合物結構見圖 1。

LC TOF 條件

HPLC 分析條件:

- 溶劑 A:含 0.1% 甲酸的水溶液
- 溶劑 B:含 0.1% 甲酸的甲醇溶液
- 流速:0.5 mL/min,90%B 等位沖 提 1 min
- 柱温:45 °C

Agilent 6220 精確質量 TOF LC/MS 資料獲取參數如下:

- 離子源:電噴噴撒(ESI)正離子模式, 使用雙噴灑器(為了質量參考溶液)
- 乾燥氣: 10 L/min, 300 °C
- 霧化器壓力:45 psi
- 質量範圍:100~1000
- 掃描速率:3 次/秒
- 斷裂電壓:125 V
- 圓錐狀撇取器:60 V
- 毛細管電壓:4000 V
- 儀器狀態:1700 *m/z*,1、2、4 GHz

LC Q-TOF 條件

液相色譜儀運行條件如下:

- 溶劑 A:含 0.1% 甲酸的水溶液
- 溶劑 B:含 0.1% 甲酸的乙腈溶液
- 流速:0.5 mL/min
- 梯度1:使用層析管柱1,柱温45°C,
 4 分鐘內溶劑 B 的比例由 20% 升至 60%(該層析條件用於司坦唑醇實驗)
- 梯度2:使用層析管柱2,柱温60°C,
 15 分鐘內溶劑B的比例由5%升至75%(該層析條件用於鑒定奈法唑酮代謝產物)

Agilent 6520 精確質量 Q-TOF LC/MS 的採集參數如下:

- 離子源:電噴灑(ESI)正離子模式, 使用雙噴灑器(為了質量參考溶液)
- 乾燥氣:10 L/min,300 °C
- 霧化器壓力: 45 psi
- 質量範圍: 80~1000 (MS和MS/MS)
- 掃描速率:3次/秒
- 斷裂電壓:200 V
- 圓錐狀撇取器:60 V
- 毛細管電壓:4000 V
- 碰撞能量:35 V(磺胺二甲氧嘧啶)
 或 55 V(司坦唑醇)
- ・ 在設定的 MS/MS 模式下運行時,分 離寬度設為中(4 m/z)
- 儀器狀態:1700 *m/z*,1、2、4 GHz

<u>結果與討論</u>

儀器解析度

TOF 質譜儀所表現的解析度與以下因素 都有關:質量分析器的實際解析能力;偵 測器電路對信號的回應以及檢測所需速度 的能力。與早期數位化輸出速率 1 GHz 的型號相比,Agilent 6220 精確質量 TOF LC/MS 和 Agilent 6520 精確 質量 Q-TOF LC/MS 均使用反應更快 的放大電路,並且真測器的數位化輸出 速率可以分別達到 1 < 2 或 4 GHz。這 種新的信號處理方式已有介紹。[1] 這類質量分析器在數位化輸出速率為 4 GHz 時, *m/z* 118 的解析度通常能 達到 10000 以上, *m/z* 1522 的解析度 能達到 20000 以上。數位化輸出速率對 測得的解析度的影響見表 1。

從表中可以明顯看出,數位化輸出速率為 1 GHz 時,在低 *m/z* 處資料的採樣過鬆 散,導致解析度遠遠低於儀器能力。 1 GHz 的採樣速率相當於每 1 奈秒採樣 1 次,因此,對於 *m/z* 118 處峰寬為 1 奈秒的層析峰,採樣次數為 1。事實上, 1 GHz 時,測得的 *m/z* 118 的解析度 約為 4000。

當分析純化合物時,數位化速率由 1 GHz 變為 4 GHz 解析度可提高 2~3 倍,但 卻不能明顯改善質量精確度。通常,對 於分子量範圍為 100~800 之間的化合 物,質量精確度為 1~2 ppm。在測定 質量誤差在 10 ppm 以上的樣品時,顯 然有其他化合物的同質量離子影響了檢 測。因此,解析度的提高將改善複雜樣

品的質量分析精確度,從而可以從 MS 和 MS/MS 資料中獲得正確的分子式。

TOF 模式下的解析度和精確度

通過試驗,比較了 TOF 模式下分別以 1 GHz 和 4 GHz 進行數位化時的質 量誤差。MAS 與 BP 的分子量相差 36 mDa。將兩種化合物以 128:1~1:1 的各種比例混合,調整流動相比例,使 這兩種化合物在層析圖中不能得到分 離。在 1 GHz 下,計算每個樣品的質量 誤差,見表 2。

稀釋液	質量誤差 (ppm)
128:1	2.89
64:1	3.25
32:1	5.09
16:1	10.13
8:1	17.13
4:1	33.17
2:1	64.06
1:1	120.51

表 2

數位化速率為 1 GHz 時, MAS 的質量誤差是 MAS/BP 比值的函數

到達時間 (nsec)	∆M (mDa)	∆t (nsec)	1 GHz 下樣品 的 FWHM	4 GHz 下樣品 的 FWHM
20,000	12	1	1	4
69,211	76	1.7	1.7	6.8
	到達時間 (nsec) 20,000 69,211	到達時間 (nsec) ΔM (mDa) 20,000 12 69,211 76	到達時間 (nsec) ΔM (mDa) Δt (nsec) 20,000 12 1 69,211 76 1.7	到達時間 (nsec) ΔM (mDa) Δt (nsec) 1 GHz 下樣品 20,000 12 1 1 69,211 76 1.7 1.7

表 1

對於列舉的 m/z值,質量差、時間差以及樣品數均為類比-數位轉換器(ADC)採樣速率的函數。半高 寬(FWHM)為質譜峰半峰高處的峰寬 在 4 GHz,所觀測的 [M+H]* 離子完全 分離,兩個化合物的質量精確度均小於 1 ppm,應用 Agilent 分子式生成器分 析這兩種離子,所得分子式完全正確。 另外,在一個很窄的 *m/z* 範圍內提取離 子層析圖,發現這兩種化合物的沖提時 間僅相差 0.5 秒。結果見圖 2 和圖 3。

儀器動態範圍

採集質譜圖時,另一個重要的因素是質譜 儀的動態範圍,包括掃描間動態範圍和掃 描內動態範圍。如果動態範圍較寬,潛在 的低豐度化合物在其他高豐度基質成分的 存在下也能偵測出。

使用 Agilent 6520 精確質量 Q-TOF LC/MS 對一系列濃度的奈法唑酮進行 檢測,作為掃描間動態範圍的一個例子 [2]。檢測濃度從偵測極限(柱上 2 pg) 到偵測器飽和濃度(柱上 100 ng)(圖 4)。對於所有濃度水平,檢測得到的質 量誤差都很低,小於 2 ppm,均通過計 算得到了分子式。

作為掃描內動態範圍的一個例子,在濃 度為 10 ng/μL 的菸鹼胺存在的情況 下,對濃度為 500 fg/μL 的紅黴素進 行檢測(圖 5)。結果明確表示掃描內 動態範圍達到 4.36 個數量級,而且準 確測定了兩種化合物的質量,質量精確 度小於 1 ppm。

圖 5 左言法 c 伊數昌级

在高達 5 個數量級的掃描內動態範圍進行精確質量分析

MS/MS 模式下的解析度和質量精度

Agilent 6520 精確質量 Q-TOF LC/MS 能給出質量精確度在 5 ppm 以內的 MS/MS 資料。這在鑒定雜質和代謝物結構 方面非常有用 [2]。當對表面上質量相等而 分子式不同的碎片離子進行區分時,解析 度就顯得非常重要。磺胺二甲氧嘧啶和司 坦唑醇能產生這樣的碎片離子。

與許多磺胺類藥物一樣,在進行 MS/MS 分析時,磺胺二甲氧嘧啶產生 m/z 156 的碎片離子。當以 Agilent 6520 精確質 量 Q-TOF LC/MS 測定時,對該 m/z 156 的碎片進行仔細分析,發現實際有兩 個相差 65.4 mDa 的不同碎片離子。即使 以 1 GHz 的數位化速率,也足以將這兩 種碎片離子分開,因此可以測量這兩種碎 片離子的精確質量。圖 6 顯示了在 1、 2、4 GHz 下採集的 m/z 156 離子的 MS/MS 放大圖。

司坦唑醇裂解產生一系列離子對(如 *m/z* 95、119、135、147、161), 這些離子對之間的質量數僅差 25 mDa (圖 7)。由於差異極為微小,要採用 4 GHz 的數位化速率才能測得足夠準確 的質量。圖 8 顯示了碎片離子 *m/z* 95 的測定結果。在 4 GHz 下,解析度一 般為 15,000 左右。應用安捷倫分子式 生成器對該條件下採集到的 MS/MS 質 譜圖進行分析,得到的分子式如表 3 所 示。這些分子式合理性很高,因為它們的 絕對質量誤差很小,通常小於 1 mDa, 而且與母離子是相符的。

對於 m/z 156 的磺胺二甲氧嘧啶裂解產物,質量誤差是數位化速率的函數

司坦唑醇裂解產生的 m/z 95(紅色)和 m/z 161(藍色)碎片離子

<u>結論</u>

本文表明:

- 當分析質量相同的雜質時,TOF 質 譜儀解析能力的提高,能夠改善質量 精確度
- 動態範圍的提高,有助於對掃描間和
 一次掃描內高、低豐度的化合物進行
 準確的質量檢測
- MS/MS 資料解析度的提高,能夠增 強獲取準確質量數和分子式資訊的信 心,從而更易於實現結構鑒定

司坦唑醇 m/z 值為 95 的碎片離子

實測值 m/z	計算 <i>m/z</i>	差異 (mDA)	差異 (ppm)	分子式	損失質量	損失分子式	豐度-
95.06151	95.06037	-1.13	-11.93	$C_5H_7N_2$	234.19837	$C_{16}H_{26}O$	3495
95.08624	95.08553	-0.72	-7.53	$C_7 H_{11}$	234.17321	C ₁₄ H ₂₂ N ₂ O	3337
119.06040	119.06037	-0.02	-0.18	$C_7H_7N_2$	210.19837	C ₁₄ H ₂₆ O	357
119.08578	119.08553	-0.26	-2.15	$C_{9}H_{11}$	210.17321	C ₁₂ H ₂₂ N ₂ O	1990
135.09166	135.09167	0.02	0.11	$C_8 H_{11} N_2$	194.16707	C ₁₃ H ₂₂ O	628
135.11642	135.11683	0.41	3.05	C ₁₀ H ₁₅	194.14191	C ₁₁ H ₁₈ N ₂ O	389
147.09201	147.09167	-0.33	-2.28	$C_9H_{11}N_2$	182.16707	C ₁₂ H ₂₂ O	376
147.11785	147.11683	-1.02	-6.96	C ₁₁ H ₁₅	182.14191	$C_{10}H_{18}N_2O$	301
161.10823	161.10732	-0.90	-5.60	$C_{10}H_{13}N_2$	168.15142	$C_{11}H_{20}O^{-1}$	112
161.13242	161.13248	0.05	0.32	C ₁₂ H ₁₇	168.12626	$C_9H_{16}N_2O$	190

表 3

從司坦唑醇 m/z 值分別為 95、119、135、147、161 的碎片離子推導得到的分子式

<u>參考文獻</u>

1.

2.

Hidalgo, A. J., Fjeldsted, J. C. and Frazer, W., "The Application of High Speed Oscilloscope Analogto-Digital Converters to Time-of-Flight Mass Spectrometry," *Proceedings 54th ASMS Conference, MPE 076*, **2007.** Nägele, E., "Improving performance, data and results through expanded dynamic range and higher mass resolution," *Agilent Technologies Application Note, publication number 5989-8528EN,* **2008.**

Doug McIntyre 和 Pat Perkins 是安 *捷倫科技公司在美國的應用化學家*, Edgar Nägele 是安捷倫科技公司德國 的應用化學家

www.agilent.com/chem/ms

本文資訊如有變更,恕不另行通知。

© 台灣安捷倫科技股份有限公司,2011 Printed in Taiwan[,] 2011 年 8 月 23 日 5989-9215CHTW

Agilent Technologies